AN UNBAIREABLE STRATIFIABLE SPACE

ERIC K. van DOUWEN

ABSTRACT. There is a stratifiable space which cannot be densely embedded in a stratifiable Baire space, in fact not even in a regular Baire σ-space. Every regular Baire σ-space, hence every stratifiable Baire space, has a dense metrizable G_δ-subspace.

1. Introduction. If \mathcal{M} is a class of generalized metrizable spaces, there is considerable interest in the following questions about \mathcal{M}:

(I) Does every Baire space in \mathcal{M} have a dense metrizable (preferably G_δ-) subspace?

(II) Can every space in \mathcal{M} be densely embedded in a Baire space in \mathcal{M}?

In this note we answer these questions for the class of stratifiable spaces and for the class of σ-spaces.

PROPOSITION. Every Baire σ-space, hence every stratifiable Baire space, has a dense metrizable G_δ-subspace.

EXAMPLE. There is a stratifiable space which cannot be densely embedded in a stratifiable Baire space, and in fact not even in a regular Baire σ-space.

The “hence” and the “not even” are justified by Heath’s theorem that every stratifiable space is a σ-space [HHJ]. The key to the Example is the following observation; π and c are the π-weight and the cellularity, respectively; see §2.

LEMMA. Let \mathcal{M} be a class of regular spaces such that

(1) every Baire space in \mathcal{M} has a dense metrizable subspace; and

(2) every space in \mathcal{M} can be densely embedded in a Baire space in \mathcal{M}.

Then $\pi(X) = c(X)$ for every $X \in \mathcal{M}$.

2. Conventions and definitions. All spaces are T_1. Cardinals are initial (von Neumann) ordinals, κ always denotes a cardinal, ω is ω_0.

A family \mathcal{B} of subsets of a space X is called a net if for every open $U \subseteq X$ and every $x \in U$ there is an $A \in \mathcal{B}$ with $x \in A \subset U$. A space will be called a σ-space if it has a σ-discrete net consisting of closed sets. (Some authors do not add the restriction “consisting of closed sets,” e.g. $[O_2]$. For regular spaces this is irrelevant, of course, and stratifiable spaces are regular.)

Received by the editors May 6, 1977.

Key words and phrases. Baire, stratifiable, σ-space, dense metrizable subspace, π-weight, cellularity, box product.

324
Stratifiable spaces are defined in [B_1].

A family \(\mathcal{B} \) of subsets of a space \(X \) is called a \(\pi \)-base if every member of \(\mathcal{B} \) is a nonempty open set, and if every nonempty open set of \(X \) includes a member of \(\mathcal{B} \). The cardinal functions \(\pi(X) \), the \(\pi \)-weight of \(X \), and \(c(X) \), the cellularity of \(X \), are defined by

\[
\pi(X) = \min\{\kappa : X \text{ has a } \pi \text{-base of cardinality } \kappa\};
\]

\[
c(X) = \sup\{\kappa : \text{there is a disjoint open family in } X \text{ with cardinality } \kappa\}.
\]

3. Proof of the Proposition. Let \(X \) be a Baire \(\sigma \)-space. Let \(\mathcal{A} = \bigcup_{n \in \omega} \mathcal{A}_n \) be a net for \(X \) consisting of closed sets, with each \(\mathcal{A}_n \) discrete. For each \(A \in \mathcal{A} \) the boundary \(\text{Bd} A \) is nowhere dense. So for each \(n \in \omega \) the set

\[
B_n = \bigcup \{\text{Bd} A : A \in \mathcal{A}_n\}
\]

is nowhere dense and closed, since \(\mathcal{A}_n \) is discrete. So \(M = X - \bigcup_{n \in \omega} B_n \) is a dense \(G_\delta \)-subspace of \(X \). Clearly the family \(\{M \cap A : A \in \mathcal{A}\} \) is a \(\sigma \)-discrete net consisting of open and closed sets for the subspace \(M \), hence \(M \) is regular and has a \(\sigma \)-discrete base. So \(M \) is metrizable.

4. Proof of the Lemma. It is well known that if \(S \) is a dense subspace of the space \(T \), then \(c(S) = c(T) \), and if \(T \) is regular then also \(\pi(S) = \pi(T) \), cf. [J].

So if \(X \in \mathcal{M} \) is a dense subspace of \(Y \in \mathcal{M} \) which has a dense metrizable subspace \(M \), then

\[
c(X) = c(Y) = c(M) = \pi(M) = \pi(Y) = \pi(X).
\]

5. Construction of the Example. Since \(c(X) \leq |X| \) for every \(X \), it follows from the Proposition and the Lemma and Heath’s theorem, quoted in the introduction, that we only have to construct a stratifiable space \(X \) with \(\pi(X) > |X| \).

If \(\langle X_\alpha \rangle_{\alpha \in \kappa} \) is a family of spaces, we denote the box product of this family by \(\prod_{\alpha \in \kappa} X_\alpha \). Given \(p \in \prod_{\alpha \in \kappa} X_\alpha \) we define a subspace \(\Xi_p \) by

\[
\Xi_p = \{x \in \prod_{\alpha \in \kappa} X_\alpha : x_\alpha = p_\alpha \text{ for all but finite many } \alpha \text{'s}\}
\]

[vD]. It is known that \(\Xi_p \) is stratifiable for any \(p \), if all \(X_\alpha \)'s are metrizable [vD], or just stratifiable [B_2]. In our example we let \(\kappa = \omega \), let the \(X_\alpha \)'s be \(\mathbb{Q} \), the rationals, and let \(p \) be arbitrary. Clearly \(|\Xi_p| = \omega \), so it suffices to show that \(\pi(\Xi_p) > \omega \). That we prove by a straightforward diagonalization argument. To this end we need the following

Fact. If \(B \) is a nonempty open set in \(\Xi_p \), then for each \(k \in \omega \) there is a \(b \in B \) with \(b_k \neq p_k \).

Indeed, there is a sequence \(\langle U_n \rangle_{n \in \omega} \) of open sets in \(\mathbb{Q} \) with \(\emptyset \neq \Xi_p \cap \Pi_{n \in \omega} U_n \subseteq B \). Since \(|U_k| > 2 \), we can find \(b \in \Xi_p \cap \Pi_{n \in \omega} U_n \) with \(b_k \neq p_k \). Let \(\mathcal{B} \) be any countable family of nonempty open sets in \(\Xi_p \). Enumerate \(\mathcal{B} \) as \(\langle B_k \rangle_{k \in \omega} \). For each \(k \in \omega \) choose \(c(k) \in B_k \) with \(c(k)_k \neq p_k \). Then

\[
U = \Xi_p \cap \Pi_{k \in \omega} (\mathbb{Q} - \{c(k)_k\})
\]

is a nonempty (for \(p \in U \)) open set in \(\Xi_p \) which does not include any
member of \mathcal{B} (for $c(k) \not\in U$ for all $k \in \omega$). Hence \mathcal{B} is not a π-base.

6. Completeness. By a theorem of Borges [B1] and, independently, Okuyama [O1], a space is metrizable iff it is a paracompact p-space with a G_δ-diagonal, in particular, iff it is a stratifiable p-space. So every nonmetrizable stratifiable space is uncompletable in the sense that it cannot be embedded in a stratifiable Čech-complete space.

On the other hand there is a nonmetrizable stratifiable space X which has a base \mathcal{B}, consisting of clopen sets, such that every centered subfamily of \mathcal{B} has nonempty intersection (see [AL] for a survey of completeness properties of this sort): Let X be the subspace $\mathbb{N} \cup \{p\}$ of $\beta\mathbb{N}$ for some $p \in \beta\mathbb{N}$. (The subspace $P \cup Q$ of [vD2, 2.3] would be a first countable such space.)

REFERENCES

Institute for Medicine and Mathematics, Ohio University, Athens, Ohio 45701