Maximal subalgebras of central separable algebras
HTML articles powered by AMS MathViewer
- by M. L. Racine
- Proc. Amer. Math. Soc. 68 (1978), 11-15
- DOI: https://doi.org/10.1090/S0002-9939-1978-0453796-5
- PDF | Request permission
Abstract:
Let A be a central separable algebra over a commutative ring R. A proper R-subalgebra of A is said to be maximal if it is maximal with respect to inclusion. Theorem. Any proper subalgebra of A is contained in a maximal one. Any maximal subalgebra B of A contains a maximal ideal $\mathfrak {m}A$ of A, $\mathfrak {m}$ a maximal ideal of R, and $B/\mathfrak {m}A$ is a maximal subalgebra of the central simple $R/\mathfrak {m}$ algebra $A/\mathfrak {m}A$. More intrinsic characterizations are obtained when R is a Dedekind domain.References
- Gorô Azumaya, On maximally central algebras, Nagoya Math. J. 2 (1951), 119–150. MR 40287
- Frank DeMeyer and Edward Ingraham, Separable algebras over commutative rings, Lecture Notes in Mathematics, Vol. 181, Springer-Verlag, Berlin-New York, 1971. MR 0280479
- E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sbornik N.S. 30(72) (1952), 349–462 (3 plates) (Russian). MR 0047629
- E. B. Dynkin, Maximal subgroups of the classical groups, Trudy Moskov. Mat. Obšč. 1 (1952), 39–166 (Russian). MR 0049903
- O. T. O’Meara, Introduction to quadratic forms, Die Grundlehren der mathematischen Wissenschaften, Band 117, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0152507
- Morris Orzech and Charles Small, The Brauer group of commutative rings, Lecture Notes in Pure and Applied Mathematics, Vol. 11, Marcel Dekker, Inc., New York, 1975. MR 0457422
- M. L. Racine, On maximal subalgebras, J. Algebra 30 (1974), 155–180. MR 349771, DOI 10.1016/0021-8693(74)90198-7
- M. L. Racine, Maximal subalgebras of exceptional Jordan algebras, J. Algebra 46 (1977), no. 1, 12–21. MR 450356, DOI 10.1016/0021-8693(77)90391-X
- Klaus W. Roggenkamp and Verena Huber-Dyson, Lattices over orders. I, Lecture Notes in Mathematics, Vol. 115, Springer-Verlag, Berlin-New York, 1970. MR 0283013
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 68 (1978), 11-15
- MSC: Primary 16A16
- DOI: https://doi.org/10.1090/S0002-9939-1978-0453796-5
- MathSciNet review: 0453796