The modular group-ring of a finite $p$-group
HTML articles powered by AMS MathViewer
- by D. L. Johnson
- Proc. Amer. Math. Soc. 68 (1978), 19-22
- DOI: https://doi.org/10.1090/S0002-9939-1978-0457539-0
- PDF | Request permission
Abstract:
For a finite p-group G and the field k of p elements, we investigate the embedding of G in the group ${G^\ast }$ of elements of the group-ring kG having coefficient-sum equal to 1. Of particular interest is the question of when G has a normal complement in ${G^\ast }$, for in this case simple proofs can be given for a number of diverse known results.References
- D. B. Coleman, Finite groups with isomorphic group algebras, Trans. Amer. Math. Soc. 105 (1962), 1–8. MR 142622, DOI 10.1090/S0002-9947-1962-0142622-2
- Donald B. Coleman, On the modular group ring of a $p$-group, Proc. Amer. Math. Soc. 15 (1964), 511–514. MR 165015, DOI 10.1090/S0002-9939-1964-0165015-8
- W. E. Deskins, Finite Abelian groups with isomorphic group algebras, Duke Math. J. 23 (1956), 35–40. MR 77535, DOI 10.1215/S0012-7094-56-02304-3
- Wolfgang Gaschütz, Nichtabelsche $p$-Gruppen besitzen äussere $p$-Automorphismen, J. Algebra 4 (1966), 1–2 (German). MR 193144, DOI 10.1016/0021-8693(66)90045-7
- S. A. Jennings, The structure of the group ring of a $p$-group over a modular field, Trans. Amer. Math. Soc. 50 (1941), 175–185. MR 4626, DOI 10.1090/S0002-9947-1941-0004626-6 L. E. Moran, The modular group ring of a p-group, M. Phil. Thesis, University of Nottingham, 1972. L. E. Moran and R. Tench, Normal complements in $\bmod \;p$ envelopes, Pacific J. Math. (to appear). R. Tench, The $\bmod \;p$ envelope of a finite p-group, M. Sc. Thesis, University of Nottingham, 1973.
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 68 (1978), 19-22
- MSC: Primary 20C05
- DOI: https://doi.org/10.1090/S0002-9939-1978-0457539-0
- MathSciNet review: 0457539