PEAK SETS FOR LIPSCHITZ FUNCTIONS

W. P. NOVINGER AND D. M. OBERLIN

Abstract. We study the peak sets for the algebras of functions analytic in the unit disc D and satisfying a Lipschitz condition on ∂D.

Let D denote the open unit disc in the complex plane, let D denote its closure, and let ∂D denote its boundary. For 0 < α < 1, let Lip α be the algebra of complex-valued functions f analytic on D, continuous on D, and satisfying a Lipschitz condition of order α on ∂D:

|f(z) - f(w)| < K|z - w|^{α} \quad (z, w \in \partial D).

Say that a function f defined on D peaks on E ⊆ ∂D if f = 1 on E and |f| < 1 on D \setminus E. Finally, say that E ⊆ ∂D is a peak set for Lip α if some f ∈ Lip α peaks on E. We are interested in characterizing the peak sets for Lip α. For α = 1, the situation is easily described. It follows from our Theorem 1 that a peak set for Lip 1 must be finite. On the other hand, a result of B. A. Taylor and D. L. Williams [7] shows that any finite subset of ∂D is a peak set for Lip 1. (In fact, [7] shows that the peaking function may be chosen to be infinitely differentiable on ∂D.) For 0 < α < 1, though, the situation seems more difficult, and we do not have such a characterization. Theorems 2 and 3 below give, respectively, sufficient and necessary conditions that E ⊆ ∂D be a peak set for Lip α (0 < α < 1). These conditions lend support to our conjecture of a necessary and sufficient condition, which we give at the end of this paper.

Before beginning, we establish some notation. We shall be dealing with closed subsets E of ∂D, and we shall always assume, without loss of generality, that -1 ∈ E. For such an E, ∂D \sim E is the union of a collection \{(a_n, b_n)\} of disjoint open arcs such that -π < a_n < b_n < π. We put \epsilon_n = b_n - a_n and, when E has been specified, shall use the a_n’s, b_n’s, and \epsilon_n’s without further comment. Now suppose that f is a continuous function defined on D. We put \|f\|_\infty equal to the (possibly infinite) number sup{|f(z)|: z ∈ D} and, for 0 < r < 1, write

M(r, f) = \left(\frac{1}{2\pi}\right) \int_{-\pi}^{\pi} |f(re^{it})| \, dt.

Theorem 1. Suppose that g is analytic in D, continuous on D, and that
Re \(g > 0 \) in \(D \). Let \(N \) be the number of zeroes that \(g \) has on \(\partial D \). Then
\[N - 1 < 2\pi \| g' \|_{\infty}^2 / |g(0)|^2. \]

Proof. Evidently we may assume that \(\| g' \|_{\infty} < +\infty \) so that, in particular,
\(g' \in H^1 \) and \(g \) is absolutely continuous on \(\partial D \) with
\[dg(e^{it})/dt = ie^{it}\lim_{r \to 1} g(re^{it}) \]
for almost every \(t \in [-\pi, \pi] \). (See Theorem 3.11 in [2].) Thus
\[
|g(e^{it}) - g(e^{is})| < \| g' \|_{\infty}|t - s|, \quad -\pi < t, s < \pi.
\]
Now let \(E \) be the zero set of \(g \) in \(\partial D \). Given \(n \), it follows from (1) and
\(g(e^{ia_n}) = g(e^{ib_n}) = 0 \) that
\[
(2) \text{ if } a_n < t < b_n, \text{ then}
\]
\[
|g(e^{it})| < \| g' \|_{\infty}\min \{ t - a_n, b_n - t \} < \| g' \|_{\infty}\varepsilon_n / 2.
\]
Let \(u \) and \(v \) be, respectively, the real and imaginary parts of \(g \). Then the
real part of \(1/g \) is \(u/|g|^2 \). Thus
\[
(3) \quad \frac{u(0)}{|g(0)|^2} = \left(\frac{1}{2\pi} \right) \int_{-\pi}^{\pi} \frac{u(e^{it})}{|g(e^{it})|^2} \, dt = \left(\frac{1}{2\pi} \right) \sum_n \int_{a_n}^{b_n} \frac{u(e^{it})}{|g(e^{it})|^2} \, dt
\]
\[
> \left(\frac{1}{\pi} \right) \left(\frac{1}{\| g' \|_{\infty}} \right) \sum_n \left(\frac{1}{\varepsilon_n} \right) \left[\int_{a_n}^{(a_n + b_n)/2} \frac{u(e^{it})}{t - a_n} \, dt + \int_{(a_n + b_n)/2}^{b_n} \frac{u(e^{it})}{b_n - t} \, dt \right],
\]
where the last inequality follows from (2).
It follows from (1) that the integral
\[
\left(\frac{1}{2\pi} \right) \int_{-\pi}^{\pi} u(e^{it})\cot\left(\frac{a - t}{2} \right) \, dt
\]
converges absolutely whenever \(u(e^{ia_n}) = 0 \). In fact, the formula for conjugate
functions on the circle allows us to write, in this case,
\[
v(e^{ia}) = \left(\frac{1}{2\pi} \right) \int_{-\pi}^{\pi} u(e^{it})\cot((a - t)/2) \, dt + v(0).
\]
Since, in particular,
\[
u(e^{ia_n}) = u(e^{ib_n}) = v(e^{ia_n}) = v(e^{ib_n}) = 0,
\]
we have
\[
\int_{-\pi}^{\pi} u(e^{it}) \left[\cot \left(\frac{a_n - t}{2} \right) - \cot \left(\frac{b_n - t}{2} \right) \right] \, dt = 0.
\]
Rewriting this we get
\[
\int_{-\pi}^{a_n} + \int_{a_n}^{b_n} u(e^{it}) \left[\cot \left(\frac{a_n - t}{2} \right) - \cot \left(\frac{b_n - t}{2} \right) \right] \, dt
\]
\[
= \int_{a_n}^{b_n} u(e^{it}) \left[\cot \left(\frac{t - a_n}{2} \right) + \cot \left(\frac{b_n - t}{2} \right) \right] \, dt.
\]
To examine the right-hand side of (4), we first note that for \(a_n < t < (a_n +
\[\frac{b_n}{2} \text{ we have} \]
\[\left| \cot \left(\frac{b_n - t}{2} \right) \right| < \cot \left(\frac{t - a_n}{2} \right) < \frac{\pi}{(t - a_n)}. \]

Thus
\[\int_{a_n}^{(a_n + b_n)/2} u(e^t) \left[\cot \left(\frac{t - a_n}{2} \right) + \cot \left(\frac{b_n - t}{2} \right) \right] dt \]
\[< 2\pi \int_{a_n}^{(a_n + b_n)/2} \frac{u(e^t)}{t - a_n} dt. \]

Similarly,
\[\int_{(a_n + b_n)/2}^{b_n} u(e^t) \left[\cot \left(\frac{t - a_n}{2} \right) + \cot \left(\frac{b_n - t}{2} \right) \right] dt \]
\[< 2\pi \int_{(a_n + b_n)/2}^{b_n} \frac{u(e^t)}{b_n - t} dt. \]

Now (3), (5), and (6) yield
\[\frac{u(0)}{|g(0)|^2} > \frac{1}{2\pi^2 \| g' \|_\infty^2} \sum_n \frac{1}{\epsilon_n} \int_{a_n}^{b_n} u(e^t) \left[\cot \left(\frac{t - a_n}{2} \right) + \cot \left(\frac{b_n - t}{2} \right) \right] dt. \]

Taking into account (4), we have
\[u(0)/|g(0)|^2 > \frac{1}{2\pi^2 \| g' \|_\infty^2} \sum_n \frac{1}{\epsilon_n} \int_{-\pi}^\pi u(e^t) \left[\cot \left(\frac{a_n - t}{2} \right) - \cot \left(\frac{b_n - t}{2} \right) \right] dt \]
\[= \frac{1}{2\pi^2 \| g' \|_\infty^2} \int_{-\pi}^\pi u(e^t) \left(\sum_n \frac{1}{\epsilon_n} \left[\cot \left(\frac{a_n - t}{2} \right) - \cot \left(\frac{b_n - t}{2} \right) \right] \right) \chi_t(t) \]
\[\cdot \chi_t(-\pi, a_n) \cup [b_n, \pi](t) \]

where \(\chi_t(-\pi, a_n) \cup [b_n, \pi]\) is the characteristic function of the set \([-\pi, a_n] \cup [b_n, \pi]\].

Now if \(-\pi < t < a_n\) or \(b_n < t < \pi\), it is easy to check that
\[\cot \left(\frac{a_n - t}{2} \right) - \cot \left(\frac{b_n - t}{2} \right) > \epsilon_n. \]

Thus if \(t \in (a_m, b_m)\), the quantity \(\cdots\) in the last term of (7) is not less than \(\sum_{n \neq m} 1/2\). Letting \(N\) be the cardinality (a priori possibly +\(\infty\)) of the collection \(\{(e^{i\alpha_n}, e^{i\beta_n})\}\) and noting that almost every \(t \in [-\pi, \pi]\) is in some \((a_m, b_m)\), we see from (7) that
This finishes the proof of the theorem.

Corollary. If \(E \) is a peak set for \(\text{Lip} 1 \), then \(E \) is finite.

Proof. Suppose that \(f \in \text{Lip} 1 \) peaks on \(E \). It follows from a result of Hardy and Littlewood (see Theorem 5.1 in [2]) that \(\|f'\|_\infty < \infty \), so Theorem 1 applies to \(g = 1 - f \).

Theorem 1 is a quantitative version of the following statement: if \(g \) is analytic in \(D \), continuous on \(D \), and has positive real part on \(D \), and if \(\|g'\|_\infty \) is finite, then the zero set of \(g \) is finite. If the hypotheses on \(g \) are strengthened to require that \(g' \) be continuous on \(D \), this statement is proved in [1]. It is perhaps surprising how much more difficult the proof becomes when \(f' \) is not required to be continuous on \(D \).

The proof of our next theorem is similar to the proof of Theorem 5 in [1].

Theorem 2. Suppose \(0 < \alpha < 1 \) and that \(E \subseteq \partial D \) is a closed set of measure zero satisfying \(\sum_n e_n^{(1-\alpha)/(3-\alpha)} < +\infty \). Then \(E \) is a peak set for \(\text{Lip} \alpha \).

Proof. Put \(\gamma = 2/(3 - \alpha) \) and define \(\phi \) on \(\partial D \) by

\[
\phi(e^{it}) = \begin{cases}
(t - a_n)^{-\gamma} + (b_n - t)^{-\gamma} & \text{if } a_n < t < b_n, \\
+\infty & \text{if } e^{it} \in E.
\end{cases}
\]

Our hypothesis \(\sum_n e_n^{(1-\alpha)/(3-\alpha)} < +\infty \) implies that the function \(t \mapsto \phi(e^{it}) \) is integrable on \([-\pi, \pi] \). Next define an analytic function \(g \) on \(D \) by

\[
g(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(e^{it}) \frac{e^{it} + z}{e^{it} - z} \, dt.
\]

The properties of \(g \) that we need are these:

(i) \(g \) has a continuous extension to \(\overline{D} \sim E \),

(ii) \(\text{Re } g(re^{it}) \to \phi(e^{it}) \) as \(r \to 1 \),

(iii) \(|g'(z)| \leq M[\text{dist}(z, E)]^{-2} \) for some constant \(M \),

(iv) \(g' \exp(-g) \) is bounded on \(D \).

For (i) and (ii) see [5, p. 80]; for (iii) see [8, Lemma 2.3]; and for (iv) see [6, pp. 1270–1271]. Now put \(h = 1/g \) and \(f = \exp(-h) \). Then \(h \) has a continuous extension to \(\overline{D} \), \(h \) has positive real part on \(\overline{D} \sim E \) (because \(g \) does), and \(h(e^{it}) = 0 \) for \(e^{it} \in E \). Thus \(f \) peaks on \(E \) and all that remains is to show that \(f \in \text{Lip} \alpha \). This will be done by showing that \(h' \) (and thus \(f' \)) belongs to the Hardy class \(H^p \), where \(p = 1/(1 - \alpha) \). (See, for example, exercise 9 on p. 91 in [2].)

Now \(h' = -h^2g'\exp(-g)/\exp(-g) \), so we see that \(h' \) is the quotient of two bounded analytic functions. Thus \(h' \) belongs to the Nevanlinna class \(N \). But because \(\exp(-g) \) is an outer function, \(h' \in N^{+} \). Thus \(h' \in H^p \) provided the boundary function \(h'(e^{it}) \in L^p(\partial D) \). (See [2, Theorem 2.11].) Now
Thus it follows from (ii) and (iii) above that

$$\limsup_{r \to 1} |h'(re^\theta)| < M[D\text{dist}(e^\theta, E)]^{-2}[\phi(e^\theta)]^{-2}.$$

There is a constant K such that $[\text{dist}(e^\theta, E)]^{-\gamma} < K\phi(e^\theta)$, and so

$$[\text{dist}(e^\theta, E)]^{-2} < K\phi(e^\theta)^{2/\gamma}.$$

When combined with (8), this implies that

$$|h'(e^\theta)| < MK^{2/\gamma}[\phi(e^\theta)]^{(2/\gamma) - 2} \quad \text{a.e.}$$

Consequently,

$$|h'(e^\theta)|^\theta < \text{constant} \cdot \phi(e^\theta) \quad \text{a.e.}$$

This shows that $h'(e^\theta) \in L^\theta(\partial D)$ and so completes the proof of the theorem.

To prove our final theorem we require a lemma.

Lemma. Let g be analytic on D and have positive real part. Then

$$M(r, g) = O\left(\log\left[\frac{1}{1 - r}\right]\right) \quad \text{as} \quad r \to 1.$$

Proof. This is a consequence of [3, Theorem 7].

Theorem 3. Fix α with $0 < \alpha < 1$ and suppose $E \subseteq \partial D$ is a peak set for Lip α. Then for each $\delta > 1$ we have

$$\sum_n e_n^{-\alpha}(|\log(1/e_n)|^{-\delta} < +\infty.$$

Proof. Let $\delta > 1$ be given. Let us assume, without loss of generality, that $b_n - a_n < \pi/2$ for each n so that if r_0 is the smallest of the numbers $\cos(b_n - a_n)$, then $0 < r_0 < 1$. Since E is a peak set for Lip α, there exists $f \in \text{Lip } \alpha$ having positive real part on $\partial D \sim E$ with $f(e^\theta) = 0$ for $e^\theta \in E$. Let K be a Lipschitz constant for f on \overline{D} so that $|f(z) - f(w)| < K|z - w|^\alpha (z, w \in \overline{D})$. (The assumption that $f \in \text{Lip } \alpha$ means that f satisfies a Lipschitz condition on ∂D. But an old result of Hardy and Littlewood [4, Theorem 41] shows that f is then Lipschitz on \overline{D}.)

By elementary calculus, $\int_0^1/(1 - r)[\log 1/(1 - r)]^\delta dr < +\infty$. When combined with the Lemma as applied to $g = 1/f$, this yields

$$\int_{r_0}^1 M(r, 1/f)/(1 - r)[\log 1/(1 - r)]^\delta dr < +\infty.$$

Thus,
\[
+ \infty > \int_{r_0}^{+\infty} \left\{ \int_{-\pi}^{\pi} \frac{1/|f(re^{it})|}{(1 - r)[\log 1/(1 - r)]^{1+\delta}} \, dt \right\} \, dr
\]

\[
= \int_{r_0}^{+\infty} \left(\sum_n \int_{a_n}^{b_n} \frac{1/|f(re^{it}) - f(e^{ia_n})|}{(1 - r)[\log 1/(1 - r)]^{1+\delta}} \, dt \right) \, dr
\]

\[
= \sum_n \int_{a_n}^{b_n} \left(\int_{r_0}^{1} \frac{dr}{K|e^{re^{it}} - e^{ia_n}|(1 - r)[\log 1/(1 - r)]^{1+\delta}} \right) \, dt
\]

\[
> \sum_n \int_{a_n}^{b_n} \left(\int_{r_0}^{1} \frac{dr}{K|e^{re^{it}} - e^{ia_n}|(1 - r)[\log 1/(1 - r)]^{1+\delta}} \right) \, dt
\]

(The last inequality follows from the facts \(r_0 < \cos(b_n - a_n) < \cos(t - a_n)\) if \(a_n < t < b_n\), and \(|re^{it} - e^{ia_n}| < |e^{it} - e^{ia_n}|\) if \(\cos(t - a_n) < r < 1\). Evaluating \(\int_{\cos(t-a_n)}^{1}/(1 - r)[\log 1/(1 - r)]^{1+\delta} \, dr\), we see that the last sum above is equal to

\[
(1/K\delta) \sum_n \int_{a_n}^{b_n} \frac{dt}{|e^{it} - e^{ia_n}|[\log 1/(1 - \cos(t - a_n))]^{\delta}}
\]

\[
> \left(\frac{1}{2^\delta K\delta} \right) \sum_n \int_{a_n}^{b_n} \frac{dt}{(t - a_n)^\delta[\log \pi/\sqrt{2}(t - a_n)]^{\delta}}
\]

where in obtaining the inequality we have used the relations

\[|e^{it} - e^{ia_n}| < t - a_n \text{ and } 1 - \cos(t - a_n) > 2(t - a_n)^2/\pi^2.\]

It follows, after a change of variable, that

\[
+ \infty > \sum_n \int_0^{\sqrt{2} \epsilon_n/\pi} t^{-\alpha}[\log 1/t]^{-\delta} \, dt
\]

Consider the equation

\[
(d/dt)(t^{1-\alpha}[\log 1/t]^{-\delta}) = (1 - \alpha)t^{-\alpha}(\log 1/t)^{-\delta} + \delta t^{-\alpha}(\log 1/t)^{-\delta-1}.
\]

By integrating both sides of this equation from 0 to \(\sqrt{2} \epsilon_n/\pi\) and then summing over \(n\), we obtain
Each sum on the right-hand side of this equation is finite because of (9). Thus so is the left-hand side. It follows easily that \(\sum_n e_n^{1-\alpha} \left(\log \frac{\pi}{\sqrt{2} e_n} \right)^{-\delta} \) completes the proof of the theorem.

In conclusion, we conjecture that the condition \(\sum_n e_n^{1-\alpha} < +\infty \) is necessary and sufficient for a closed subset \(E \) of \(\partial D \) having measure 0 to be a peak set for Lip \(\alpha \).

REFERENCES

DEPARTMENT OF MATHEMATICS, FLORIDA STATE UNIVERSITY, TALLAHASSEE, FLORIDA 32306