Near compactness and separability of symmetrizable spaces
HTML articles powered by AMS MathViewer
- by R. M. Stephenson
- Proc. Amer. Math. Soc. 68 (1978), 108-110
- DOI: https://doi.org/10.1090/S0002-9939-1978-0458372-6
- PDF | Request permission
Abstract:
Although every feebly compact, Baire, semimetrizable space is separable, we prove here that for every infinite cardinal number n there exists a feebly compact, Baire, symmetrizable Hausdorff space which has no dense subset of cardinality less than n.References
- A. V. Arhangel′skiĭ, Mappings and spaces, Russian Math. Surveys 21 (1966), no. 4, 115–162. MR 0227950, DOI 10.1070/RM1966v021n04ABEH004169
- S. W. Davis, G. Gruenhage, and P. J. Nyikos, $G_{\delta }$ sets in symmetrizable and related spaces, General Topology Appl. 9 (1978), no. 3, 253–261. MR 510907
- John Wm. Green, Moore-closed spaces, completeness and centered bases, General Topology and Appl. 4 (1974), 297–313. MR 365502
- R. A. McCoy, A filter characterization of regular Baire spaces, Proc. Amer. Math. Soc. 40 (1973), 268–270. MR 339096, DOI 10.1090/S0002-9939-1973-0339096-8
- G. M. Reed, On chain conditions in Moore spaces, General Topology and Appl. 4 (1974), 255–267. MR 345076 R. M. Stephenson, Jr., Symmetrizable, $\mathcal {F}$-, and weakly first countable spaces, Canad. J. Math. 29 (1977).
- R. M. Stephenson Jr., Symmetrizable-closed spaces, Pacific J. Math. 68 (1977), no. 2, 507–514. MR 482678
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 68 (1978), 108-110
- MSC: Primary 54E25; Secondary 54G20
- DOI: https://doi.org/10.1090/S0002-9939-1978-0458372-6
- MathSciNet review: 0458372