Maximal and minimal ring topologies
HTML articles powered by AMS MathViewer
- by Niel Shell
- Proc. Amer. Math. Soc. 68 (1978), 23-26
- DOI: https://doi.org/10.1090/S0002-9939-1978-0460305-3
- PDF | Request permission
Abstract:
An explicit description is given of a nondiscrete ring topology on the field Q of rational numbers which is strictly finer than the locally bounded topology on Q having the ring of integers as a preorder. It is observed that either there exist nonvaluable minimal ring topologies or there exist ring topologies containing no minimal ring topologies.References
- J. Heine and Seth Warner, Ring topologies on the quotient field of a Dedekind domain, Duke Math. J. 40 (1973), 473–486. MR 319960
- Lowell A. Hinrichs, Integer topologies, Proc. Amer. Math. Soc. 15 (1964), 991–995. MR 178028, DOI 10.1090/S0002-9939-1964-0178028-7
- John O. Kiltinen, Inductive ring topologies, Trans. Amer. Math. Soc. 134 (1968), 149–169. MR 228474, DOI 10.1090/S0002-9947-1968-0228474-6
- M. E. Shanks and Seth Warner, Topologies on the rational field, Bull. Amer. Math. Soc. 79 (1973), 1281–1282 (1974). MR 369333, DOI 10.1090/S0002-9904-1973-13415-9
- Niel Shilkret, Non-Archimedean orthogonality, Arch. Math. (Basel) 27 (1976), no. 1, 67–78. MR 440346, DOI 10.1007/BF01224643
- J. H. Williamson, On topologising the field $C(t)$, Proc. Amer. Math. Soc. 5 (1954), 729–734. MR 63574, DOI 10.1090/S0002-9939-1954-0063574-0
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 68 (1978), 23-26
- MSC: Primary 12J99
- DOI: https://doi.org/10.1090/S0002-9939-1978-0460305-3
- MathSciNet review: 0460305