On a classification of plane domains for Hardy classes
HTML articles powered by AMS MathViewer
- by Shōji Kobayashi
- Proc. Amer. Math. Soc. 68 (1978), 79-82
- DOI: https://doi.org/10.1090/S0002-9939-1978-0486533-9
- PDF | Request permission
Abstract:
For every positive nubmer p, let ${O_p}$ denote the class of plane domains W for which the Hardy class ${H_p}(W)$ contains no nonconstant functions, and $O_p^ - = \cup \{ {O_q}:0 < q < p\}$. In this paper it is proved that ${O_p}$ strictly contains $O_p^ -$ if $p \geqslant 1$.References
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- Maurice Heins, Hardy classes on Riemann surfaces, Lecture Notes in Mathematics, No. 98, Springer-Verlag, Berlin-New York, 1969. MR 0247069
- Dennis A. Hejhal, Classification theory for Hardy classes of analytic functions, Bull. Amer. Math. Soc. 77 (1971), 767–771. MR 281907, DOI 10.1090/S0002-9904-1971-12801-X —, Classification theory for Hardy classes of analytic functions, Ann. Acad. Sci. Fenn. Ser. A I No. 566 (1973), 1-28.
- Sh\B{o}ji Kobayashi, On $H_{p}$ classification of plane domains, K\B{o}dai Math. Sem. Rep. 27 (1976), no. 4, 458–463. MR 442235
- Tsunehiko Shimbo, On harmonic majoration, K\B{o}dai Math. Sem. Rep. 28 (1976/77), no. 2-3, 278–283. MR 466598
- Morisuke Hasumi, Hardy classes on plane domains, Ark. Mat. 16 (1978), no. 2, 213–227. MR 524750, DOI 10.1007/BF02385996
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 68 (1978), 79-82
- MSC: Primary 30A78
- DOI: https://doi.org/10.1090/S0002-9939-1978-0486533-9
- MathSciNet review: 0486533