Simplicial Schreier systems and the commutator subgroup of the free group on the circle
HTML articles powered by AMS MathViewer
- by Sabah A. Ghullam
- Proc. Amer. Math. Soc. 68 (1978), 111-116
- DOI: https://doi.org/10.1090/S0002-9939-1978-0507217-4
- PDF | Request permission
Abstract:
It is shown that the commutator subgroup of the free simplicial group on the circle has a simplicial Schreier system and is a free simplicial group on a pointed simplicial set.References
- R. Brown, Cohomology with chains as coefficients, Proc. London Math. Soc. (3) 14 (1964), 545–565. MR 163301, DOI 10.1112/plms/s3-14.3.545
- Ronald Brown, Some nonprojective subgroups of free topological groups, Proc. Amer. Math. Soc. 52 (1975), 433–440. MR 393326, DOI 10.1090/S0002-9939-1975-0393326-7
- Francis Clarke, The commutator subgroup of a free topological group need not be projective, Proc. Amer. Math. Soc. 57 (1976), no. 2, 354–356. MR 404512, DOI 10.1090/S0002-9939-1976-0404512-2
- Edward B. Curtis, Simplicial homotopy theory, Advances in Math. 6 (1971), 107–209 (1971). MR 279808, DOI 10.1016/0001-8708(71)90015-6 S. A. Ghullam, Univ. of Wales thesis, (in preparation).
- M. I. Graev, Free topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 12 (1948), 279–324 (Russian). MR 0025474
- Marshall Hall Jr., The theory of groups, The Macmillan Company, New York, N.Y., 1959. MR 0103215 J. P. Hardy and D. Puppe, Classifying spaces and universal categories (to appear).
- David C. Hunt and Sidney A. Morris, Free subgroups of free topological groups, Proceedings of the Second International Conference on the Theory of Groups (Australian Nat. Univ., Canberra, 1973) Lecture Notes in Math., Vol. 372, Springer, Berlin, 1974, pp. 377–387. MR 0352317
- Daniel M. Kan and George W. Whitehead, Orientability and Poincaré duality in general homology theories, Topology 3 (1965), 231–270. MR 190925, DOI 10.1016/0040-9383(65)90056-X
- J. Peter May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0222892 J. W. Milnor, The construction FK, A student’s guide to algebraic topology by J. F. Adams, London Math. Soc. Lecture Notes 4 (1972).
- Peter Nickolas, A Schreier theorem for free topological groups, Bull. Austral. Math. Soc. 13 (1975), no. 1, 121–127. MR 379741, DOI 10.1017/S0004972700024308
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 68 (1978), 111-116
- MSC: Primary 22A99; Secondary 20E05
- DOI: https://doi.org/10.1090/S0002-9939-1978-0507217-4
- MathSciNet review: 0507217