A new generalization of the Sturm comparison theorem to selfadjoint systems
HTML articles powered by AMS MathViewer
- by Shair Ahmad and Alan C. Lazer
- Proc. Amer. Math. Soc. 68 (1978), 185-188
- DOI: https://doi.org/10.1090/S0002-9939-1978-0470327-4
- PDF | Request permission
Abstract:
The Sturm Comparison Theorem is generalized to second order linear systems. It is based on a comparison of the elements of the matrices involved.References
- Shair Ahmad and A. C. Lazer, Component properties of second order linear systems, Bull. Amer. Math. Soc. 82 (1976), no. 2, 287–289. MR 399574, DOI 10.1090/S0002-9904-1976-14025-6
- Shair Ahmad and Alan C. Lazer, On the components of extremal solutions of second order systems, SIAM J. Math. Anal. 8 (1977), no. 1, 16–23. MR 430409, DOI 10.1137/0508002
- W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag, Berlin-New York, 1971. MR 0460785
- I. M. Gelfand and S. V. Fomin, Calculus of variations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963. Revised English edition translated and edited by Richard A. Silverman. MR 0160139
- Marston Morse, A generalization of the sturm separation and comparison theorems in $n$-space, Math. Ann. 103 (1930), no. 1, 52–69. MR 1512617, DOI 10.1007/BF01455690
- William T. Reid, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR 0273082 J. C. F. Sturm, Mémoire sur les équations différentielles linéaires de second ordre, J. Math. Pures Appl. 1 (1836), 106-186.
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 68 (1978), 185-188
- MSC: Primary 34C10
- DOI: https://doi.org/10.1090/S0002-9939-1978-0470327-4
- MathSciNet review: 0470327