Noncrossed products of small exponent
HTML articles powered by AMS MathViewer
- by David J. Saltman
- Proc. Amer. Math. Soc. 68 (1978), 165-168
- DOI: https://doi.org/10.1090/S0002-9939-1978-0476794-4
- PDF | Request permission
Abstract:
Using the generic division algebras, we construct new division algebras and prove the following. Theorem. Let $m$, $n$ be positive integers, $m|n$, such that $m$ is divisible by every prime which divides $n$. If $k$ is any field, and there is a prime $p$ such that ${p^3}|m$, then there is a noncrossed product division $k$-algebra of exponent $m$ and degree $n$. If $k$ is a global field of characteristic 0, $p$ is an odd prime, and $k$ does not contain a primitive $p$th root of 1, we need only assume $p^2|m$.References
- S. A. Amitsur, On central division algebras, Israel J. Math. 12 (1972), 408–420. MR 318216, DOI 10.1007/BF02764632
- E. Artin and J. Tate, Class field theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0223335
- Otto Endler, Valuation theory, Universitext, Springer-Verlag, New York-Heidelberg, 1972. To the memory of Wolfgang Krull (26 August 1899–12 April 1971). MR 0357379
- Burton Fein and Murray M. Schacher, Galois groups and division algebras, J. Algebra 38 (1976), no. 1, 182–191. MR 401828, DOI 10.1016/0021-8693(76)90253-2
- Nathan Jacobson, $\textrm {PI}$-algebras, Lecture Notes in Mathematics, Vol. 441, Springer-Verlag, Berlin-New York, 1975. An introduction. MR 0369421
- I. Reiner, Maximal orders, London Mathematical Society Monographs, No. 5, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1975. MR 0393100
- Louis Halle Rowen, Central simple algebras, Israel J. Math. 29 (1978), no. 2-3, 285–301. MR 491810, DOI 10.1007/BF02762016
- David J. Saltman, Splittings of cyclic $p$-algebras, Proc. Amer. Math. Soc. 62 (1977), no. 2, 223–228. MR 435044, DOI 10.1090/S0002-9939-1977-0435044-4 —, Noncrossed product algebras and Galois p extensions, J. Algebra (to appear).
- O. F. G. Schilling, The Theory of Valuations, Mathematical Surveys, No. 4, American Mathematical Society, New York, N. Y., 1950. MR 0043776 J. Serre, Corps locaux, Hermann, Paris, 1962.
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 68 (1978), 165-168
- MSC: Primary 16A40
- DOI: https://doi.org/10.1090/S0002-9939-1978-0476794-4
- MathSciNet review: 0476794