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EXISTENCE AND UNIQUENESS OF SOLUTIONS

TO ABSTRACT VOLTERRA INTEGRAL EQUATIONS

T. KIFFE AND M. STECHER

Abstract. The existence and uniqueness of solutions to the equation

u(t) + f'0a(t — s)Au(s) ds Bf(t), where A is a maximal monotone opera-

tor, is proved under various restrictions on A and /.

I. Introduction. This paper discusses the existence and uniqueness of

solutions to the abstract Volterra integral equation

(1.1) u(t)+ f'a(t-s)Au(s)ds3f(t),

where A is a possibly multiple valued maximal monotone operator from the

real Hilbert space 77 into 77, / maps the interval [0, T] into 77, and a(t) is a

real valued differentiable function defined on [0, T], such that a(0) > 0.

Equations similar to (1.1) arise in the study of heat transfer subject to

nonlinear boundary conditions, and in other areas. We refer the reader to [5]

and [7].

There has been some recent work on this problem [1], [3], [4], [6] and the

results are basically of two types. The first insists that f(t) is smooth, i.e.,

/ G H71'2^, T; 77], while the second allows / to be an arbitrary element of

L2[0, T; 77], but requires that the nonlinear operator A have at most linear

growth.

We will show that if A takes bounded subsets of 77 into bounded sets and/

is in L°°[0, T; 77], then (1.1) has a unique local solution. By further restricting

the kernel function a(t) we are able to show the existence of global solutions.

We are also able to show that by further restricting the growth of A, i.e., \Ax\

grows no faster than some polynomial in \x\, then, even for unbounded /(?),

(1.1) still has a unique solution. This result (Proposition 2.6) extends the

results of [1], [4]. A result concerning the asymptotic behavior of the solution

u(t) is also included and an example shows this is best possible.

In §§II and III we state our results and give their proofs, respectively. In

the last section we give several examples.

We will use the following notation throughout:
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(•, • ), |-1 will denote the inner product and norm of H, respectively,

Lp[0, T; H] = i/|/: [0, T] -* H,fT\f(s)\p ds < ooj, 1 < p < oo,

L°°[0, T; H] = iff. [0, T] ^ H, esssup|/(0l < oo],
1 o<t<r >

(1.2)      <«, v)LnoTH] = fT(u(t), v(t)) dt,
'O

llMIU2[0, T;H]= ("' U)l210,T;H]'

JX = (I + XA)~\       X>0,

Ax = X~X[I — Jx],       X > 0 (Yosida approximate of A ),

A °x will denote the unique element in Ax of minimal norm.

II. Statement of results. We will assume that the kernel function a(t)

satisfies either of the following two conditions

(i) a(0) > 0.

(2.1) (H) a(t) is absolutely continuous and a' is of bounded

variation for 0 < t < T.

a(t) is in C[0, oo; R] n LlJfi, oo; R] and is of positive type:

(2.2) this   means   that   the   map   which   sends   u(t) -»

j'0a(t — s)u(s) ds is nonnegative, i.e.,

(2.3) f m(t) Ca(r - s)u(s) ds dt > 0,    for u E L2[0, T; Rl.
•'0 •'0

A necessary and sufficient condition that a(t) satisfy (2.3) is

(2.4) lim inf Re â (o + ir) > 0 for any real t,
a—»0+

where

â(s)= re-"a(r)dT     [8].

Lemma 2.1 and Theorem 2.3 below summarize the tenchique developed by

Londen [6].

Lemma 2.1 (Londen [6]). Let a(t) satisfy (2.1). Let u„ be a sequence in

L2[0, T; H] such that || w„|| z,2[o,t-;//] are uniformly bounded. Then either

j'0a(t — s)un(s) ds converges uniformly on [0, T] to zero as n tends to infinity,

or there is a t, 0 < t < T, such that

(2.5) lim sup /   ( / a(r - s)un(s) ds, un(r) ) dr > 0.
n->oo     -'0    Wo /

Lemma 2.2 (Staffans [9]). Let a(t) satisfy (2.2). Then for all u E L2[0, T;

H],
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f'a(t - s)u(s) ds   < 2a(0)['(fTa(T - s)u(s) ds, u(t)\ d-r,

0 < t < T.

By ux we denote the unique L2[0, T; 77] solution of

(2.7) ux(t) + f'a(t - s)Axux(s) ds = f(t),       X > 0,
•'o

where a(t) satisfies (2.1) or (2.2). Since the Yosida approximate Ax of A is

Lipschitz continuous it is clear that (2.7) has a unique solution for any / in

L2[0, T; 77].

Theorem 2.3. Let a(t) satisfy (2.1) or (2.2). Suppose the ux and Axux defined

by (2.7) are bounded in L2[0, T; 77] independent ofX. Then (1.1) has a solution

u(t). That is, there is a pair of functions u(t) and w(t) both in L2[0, T; 77] such

that

(2.8) u(t) + f a(t - s)w(s) ds = f(t),       w(t) E Au(t) a.e.
Jo

Moreover if a(t) satisfies (2.1) the pair u, w is unique or, if a(t) satisfies (2.2)

and A is strictly monotone then u is unique.

Proposition 2.4. Let A be defined on all of 77, and take bounded sets into

bounded sets, i.e., (J ^<rAx is bounded for any finite r. Let a(t) satisfy (2.1).

Then iff E L°°[0, T; 77], there exists a t0 > 0 such that ux and Axux defined by

(2.7) are uniformly bounded in L°°[0, t0; 77], and hence in L2(0, t0; 77).

Theorem 2.3 and Proposition 2.4 imply the existence of a local solution to

(1.1). Moreover this solution must also lie in L°°[0, f0; 77], which implies that

the solution to (1.1) may be continued as long as its supremum norm remains

finite.

We remark that the requirement that A take bounded sets into bounded

sets can be weakened to A being bounded in a neighborhood of/(0), if/(f) is

continuous at f = 0. In this case our proof of Proposition 2.4 is still valid.

Our next results establish the existence of global solutions to (1.1).

Proposition 2.5. Let A be defined on all of H and take bounded sets into

bounded sets. Let a(t) satisfy (2.2). Iff E L°°[0, T; H], then (1.1) has a unique

solution on [0, T].

The above easily implies that if / G LiJJO, oo; 77], then (1.1) has a unique

solution in L£c[0, oo; 77].

Proposition 2.6. Let A have at most polynomial growth, that is, there is a

constant c and a positive integer p such that

(2.9) |u| < c(l +\uf)      for every (u,v) E A.

Let a(t) satisfy (2.2) and assume f E L^fO, T; 77]. Then (1.1) has a unique

solution on [0, T].
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From the proof of Proposition 2.5 we derive the estimate

(2.10) H0-/WI <cf\A°f(T)\dT.
•'0

Example 1 in §IV shows this is the best possible growth condition without

further restrictions on (1.1). In particular/ in L°°[0, oo; H] need not imply u

inL°°[0, oo;H].

Arguing as in the proof of Proposition 2.5 the solutions of (1.1) can be

shown to depend on/in a continuous manner. That is, the map which sends/

into u is continuous from L°°[0, T; H] onto L°°[0, T; H].

III. Proofs.

Theorem 2.3. Let a(t) satisfy (2.1). Since the ux and Axux are bounded in

L2[0, T; H] we may extract subsequences w^ and A^u^ (which will be

denoted by u„ and Anun) which converge weakly to u and w respectively. It is

easily seen that u and w satisfy (2.8). To show w(t) E Au(t) we first claim

that

(3.1) fa(t - s)Anun(s) ds

must converge uniformly on [0, T]. Suppose not, then there exist two

subsequences An un and Am um such that

(3-2) jf a(/ - s)[Anu„k(s) - A^u^s)] ds

does not converge uniformly to zero as k tends to infinity. By Lemma 2.1

there is a t,0 < t < T, such that

0 <limsup f {Anunt(r) - A^u^t),

f a(r - s)[Anu„t(s) - A^u^{s)] ds) dr

(3.3) = lim sup [ (Anunt(r) - A^u^r), u^t) - u^r)) di

< lim sup f (A„unk(T) - AmkUmk(j),
k->ao     J0

%(T) - J^u^Ít) + J„u„k(T) - unk(r)) dr

since Axu E AJxu and A is monotone. This gives us

0 < lim sup [ {Anunk(r) - Amumk(t),
(3.4) k^œ     °

KA^UmÁT)  - KAnUnk(T)) dr.
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Since the Axux's are uniformly bounded in L2[0, T; H] and X^ —> 0 as k -> oo

we have that 0 < 0. Thus (3.1) must converge uniformly to f'0a(t - s)w(s) ds.

From this and (2.7) we may conclude that un converges strongly to u. Now let

& denote the usual extension of A to L2[0, T; 77]. We have that unE D(&)

and A„un = 6B„h„. Let x E D(&) and y E &x. Then <£nx -> <2°x, and

0 < lim (&nx - &„u„, x - u„)L2l0J..H]

Since & is maximal monotone, (3.5) implies that

(3.6) 0 < (y - w, x - u)Ll[0T.H]

for all (x,y) E &. Thus (u, w) E &, that is, w(t) E Au(t) a.e. cf. [2]. We have

now shown that a solution to (1.1) exists. To see that u and w are unique,

suppose that (x, y) is another solution pair. We then get

(3.7) u(t) - x(t) + f'a(t - s)[w(s) - y(s)] ds = 0.

From Lemma 2.1 either the integral term is identically zero or as before we

get from some t that

(3-8) 0 < f ' (w(r) - y(r), x(r) - u(r)) dr,

which, from the monotonicity of A, is impossible. Thus u(t) = x(t) and

w(t) = y(t) a.e.

To see that Theorem 2.3 is true when a(t) satisfies (2.2) we refer the reader

to Barbu [1, Theorem 1, p. 733].

Proposition 2.4. Let |a(f)| < M, 0 < f < T, \\f\\L«l0.T;H] < Mv and M2

be such that \x\ < 2MX implies |^°x| < M2. Then

(3-9) \Ml-Io,,**] < 2Mv       '6 = MX/MM2.

To prove (3.9) let f, be the largest t such that ||"x||/,»[o>fi;//] < 2MX. Suppose

f, < f0, then for f < f, we have

M/)|<|/(/)|+/V(í-*)ll^x^(')|*•'0

(3.10)

Mx + M['\A°ux(s)\ds <2MX.<

Since the integral term in (3.10) is a continuous function of f, we see that f,

cannot be less than f0. Thus on the interval [0, f0], the ufs are uniformly

bounded and so are the Axux's since |^AwA(f)| < |y4°wx(f)|, and A takes

bounded sets into bounded sets.

Proposition 2.5. Letting c denote a generic positive constant we have from

Lemma 2.2 and (2.7) that
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2

K(0-/(0|2=  f'a(t-s)Axux(s)ds

< cf Ma"x(t). f a(r - s)Axux(s) dsjdr

(3.11) = c['(Axux(r),f(T)-ux(r))dr

<cf(AxJ(r),f(r)-ux(r))dr

<cf'\A0f(T)\\f(r)-ux(T)\dr.

Thus by an inequality similar to GronwalFs we have

(3.12) \ux(t)-f(t)\<cf'\A0f(r)\dr.

Since/ E L°°[0, T; H] and A takes bounded sets into bounded sets, the «A's

are uniformly bounded in L°°[0, T; H]. Hence we have the «A's uniformly

bounded in L2[0, T; H] and thus so are the Axux's. Proposition 2.5 now

follows from Theorem 2.3.

Proposition 2.6. As in Proposition 2.5 we have

(3-13) \\^-A\l>Io,t-,hï-<c7}\a0A\lHo,t-,hï

As/is assumed to be in L2P[0, T; H] and A satisfies (2.9), the wA's are again

uniformly bounded. Moreover from (2.7) we may show that the uxs are also

uniformly bounded in L2P[0, T; H]. Hence the ^xma's are uniformly bounded

in L2[0, T; H].

IV. Examples. Example 1 below shows that the growth estimate

(4.1) \u(t)-f(t)\<cfjA°f(r)\dr

obtained from (3.12) is the best possible.

Example 1. Let H = R, Au = -1, a(t) = l,/(r) = 0. Equation (1.1) is now

(4.2) u(t)+ f'(-l)ds = 0.
Jo

The solution u(t) = t shows that (4.1) is precise.

The next example demonstrates that if the forcing term is not in L°°[0, T;

H], then even for bounded nonlinear operators we will not get L2 solutions.

That is, (1.1) may have a solution but not both u and Au will be in L2[0, T;

H].
Example 2. Let H = R, Au = \u\u, a(t) = 1, /(/) = t~x^. We then have

from (1.1)

(4.3) u(t) + f'\u(s)\u(s) ds = t~x/\
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Since any solution of (4.3) cannot lie in L4[0, T; R], we see that Au = \u\u is

not in L2[0, T; R]. Clearly this same type of argument holds if Au = \u\au for

any positive a.
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