ON DENSITY OF ALGEBRAS
WITH MINIMAL INVARIANT OPERATOR RANGES

HEYDAR RADJAVI

ABSTRACT. Let \mathfrak{A} be an arbitrary subalgebra of $\mathcal{B}(\mathcal{H})$ and let \mathfrak{M} be a dense operator range invariant under \mathfrak{A} such that every nonzero operator range invariant under \mathfrak{A} contains \mathfrak{M}. Then the closure of \mathfrak{A} in the strong operator topology is $\mathcal{B}(\mathcal{H})$.

Let \mathfrak{A} be a subalgebra of $\mathcal{B}(\mathcal{H})$, the algebra of all (bounded, linear) operators on the complex Hilbert space \mathcal{H}. No topological closure assumptions are made on \mathfrak{A}. The transitive algebra problem (cf. [7, p. 138]) can be stated as follows: if the only closed subspaces of \mathcal{H} invariant under (all members of) \mathfrak{A} are $\{0\}$ and \mathcal{H}, is \mathfrak{A} strongly dense in $\mathcal{B}(\mathcal{H})$? Foiaş [5] showed that the answer is affirmative if the hypothesis is strengthened by substituting “operator ranges” for “closed subspaces.” By an operator range is meant the range of an operator from \mathcal{H} into \mathcal{H}; Foiaş sometimes uses the nomenclature “para-closed subspaces” for operator ranges.

Operator ranges have proven to be useful tools in dealing with questions related to reductivity and reflexivity of operator algebras. The results of Azoff [1] and Douglas and Foiaş [3] are examples. For an extension of the above-quoted result of Foiaş see [6].

In this note we prove strong density for those transitive algebras whose lattice of invariant operator ranges has a simple property; the nonzero elements of the lattice have a nonzero lower bound. Examples of such algebras are abundant; for a simple example let K be an injective operator \mathcal{H} with dense range (but $K\mathcal{H} \neq \mathcal{H}$ to make the example nontrivial). Let \mathfrak{A} be the right ideal $K\mathcal{B}(\mathcal{H})$ of $\mathcal{B}(\mathcal{H})$. Then $K\mathcal{H}$ is certainly invariant under \mathfrak{A} and every nonzero operator range, in fact every nonzero linear manifold, invariant under \mathfrak{A} must include $K\mathcal{H}$.

We shall need the following lemmas.

Lemma 1. Let K be an injective operator whose range is a minimal, dense, invariant operator range for the algebra \mathfrak{A}. Then there is an algebra isomorphism ϕ of \mathfrak{A} into $\mathcal{B}(\mathcal{H})$ such that

(i) $AK = K\phi(A)$ for all $A \in \mathfrak{A},$

(ii) $\phi(\mathfrak{A})$ is strongly dense in $\mathcal{B}(\mathcal{H})$, and
(iii) If \(K \mathcal{H} \) is contained in all nonzero invariant operator ranges of \(\mathfrak{A} \), then the only operators \(L \) satisfying the equation \(AL = L \phi(A) \) for all \(A \) in \(\mathfrak{A} \) are scalar multiples of \(K \).

Proof. (i) For each \(A \in \mathfrak{A} \), \(AK \mathcal{H} \subseteq K \mathcal{H} \) and thus there is an operator \(B \) with \(AK = KB \); (see, e.g., [2]). The fact that \(B \) depends uniquely and isomorphically on \(A \) is easy to verify.

(ii) To verify strong density of \(\phi(\mathfrak{A}) \) it suffices to show that \(\phi(\mathfrak{A}) \) has no invariant operator ranges other than \(\{0\} \) and \(\mathcal{H} \) (by Foiaş [5]). Let \(M \) be a nonzero operator whose range is invariant under \(\phi(\mathfrak{A}) \). Assume, with no loss of generality, that \(M \) is injective. (If \(S \) is an isometry of \(\mathcal{H} \) onto \(\mathcal{H} / M^{-1}(0) \), then \(MV \) is injective and has the same range as \(M \).) Thus \(\phi(A)M = M\psi(A) \) for all \(A \in \mathfrak{A} \), where \(\psi \) is an algebra homomorphism. Then \(AKM = K\phi(A)M = KM\psi(A) \), which implies that \(KM \mathcal{H} \) is invariant under \(\mathfrak{A} \). By the minimality of \(K \mathcal{H} \), \(K \mathcal{H} = KM \mathcal{H} \); since \(K \) is injective, we obtain \(M \mathcal{H} = \mathcal{H} \).

(iii) First note that \(AL = L \phi(A) \) implies that either \(L \) is zero or it is injective, because if \(Lx = 0 \) with \(x \neq 0 \), then \(L\phi(A)x = \mathfrak{A}Lx = 0 \). Since \(\phi(\mathfrak{A}) \) is strongly dense in \(\mathfrak{B}(\mathcal{H}) \), this implies \(L \mathcal{H} = 0 \).

Now the equation \(AL = L \phi(A) \) also implies that \(L \mathcal{H} \) is invariant under \(\mathfrak{A} \) and thus there is an operator \(M \) with \(LM = K \). Then

\[
LM\phi(A) = ALM = L\phi(A)M
\]
or, assuming \(L \neq 0 \), \(M\phi(A) = \phi(A)M \). Since \(\phi(\mathfrak{A}) \) is dense in \(\mathfrak{B}(\mathcal{H}) \), \(M \) commutes with \(\phi(\mathfrak{A}) \) and must be a scalar operator.

Before stating the next lemma we fix some notation and terminology. For \(A \in \mathfrak{B}(\mathcal{H}) \) we denote by \(A^{(n)} \) the direct sum of \(n \) copies of \(A \) acting on \(\mathcal{H}^{(n)} \), the direct sum of \(n \) copies of \(\mathcal{H} \); for an algebra \(\mathfrak{A} \) of operators, \(\mathfrak{A}^{(n)} \) will stand for \(\{A^{(n)}: A \in \mathfrak{A}\} \). A **graph subspace** for \(\mathfrak{A}^{(n)} \) is a closed subspace of \(\mathcal{H}^{(n)} \), invariant under \(\mathfrak{A}^{(n)} \), which has the form

\[
\{x \oplus T_1x \oplus \cdots \oplus T_{n-1}x: x \in \mathcal{D}\},
\]
where \(\mathcal{D} \) is a dense linear manifold in \(\mathcal{H} \) and, for each \(i \), \(T_i \) is a linear transformation from \(\mathcal{D} \) into \(\mathcal{H} \). Each \(T_i \) is called a **graph transformation** for \(\mathfrak{A} \). This definition implies, in particular, that \(\mathcal{D} \) and the \(T_i \mathcal{D} \) are invariant under \(\mathfrak{A} \).

The following lemma due to Arveson, will be used; for a proof see [7, p. 143].

Lemma 2. Let \(\mathfrak{A} \) be an algebra with the property that every graph transformation for \(\mathfrak{A} \) is a scalar multiple of the identity on \(\mathcal{H} \). Then \(\mathfrak{A} \) is strongly dense in \(\mathfrak{B}(\mathcal{H}) \).

(Note that the hypothesis on \(\mathfrak{A} \) implies that \(\mathfrak{A} \) has no closed invariant subspaces except \(\{0\} \) and \(\mathcal{H} \).)

Theorem. Let \(\mathfrak{A} \) be a subalgebra of \(\mathfrak{B}(\mathcal{H}) \). Assume that \(\mathfrak{A} \) has a dense,
invariant operator range contained in every nonzero invariant operator range. Then \mathfrak{A} is strongly dense in $\mathfrak{B}(\mathcal{K})$.

Proof. Let $K \in \mathfrak{B}(\mathcal{K})$ such that $K\mathcal{K}$ is the lower bound of the nonzero invariant operator ranges as hypothesized. The operator K can also be assumed to be injective. Now $AK = K\phi(A)$ for all $A \in \mathfrak{A}$, where ϕ is the isomorphism given by Lemma 1.

Let n be any positive integer and let \mathcal{M} be a graph subspace for $\mathfrak{A}^{(n)}$. Then \mathcal{M} can be considered as the graph of a closed linear transformation T from a dense domain \mathcal{D} in \mathcal{K} into $\mathcal{K}^{(n-1)}$ defined by $Tx = T_1x \oplus \cdots \oplus T_{n-1}x$, $x \in \mathcal{D}$. Now $\mathcal{D} = C_1\mathcal{K}$, where C_1 is a bounded, injective operator on \mathcal{K} (see, e.g., [4]). Thus

$$\mathcal{M} = \{ C_1y \oplus TC_1y : y \in \mathcal{K} \};$$

since TC_1 is closed, it follows from the closed-graph theorem that it is bounded. Hence T_iC is bounded, for each i, because $T_iC = P_iTC$, where P_i is a projection. We can now represent \mathcal{M} as

$$\{ C_1x \oplus C_2x \oplus \cdots \oplus C_nx : x \in \mathcal{K} \},$$

where each C_i is a bounded operator and where C_1 is, furthermore, injective.

The inclusion $A^{(n)}\mathcal{M} \subseteq \mathcal{M}$ implies that for each x and each $A \in \mathfrak{A}$ there exists a y with $AC_iy = C_iy$ for $i = 1, \ldots, n$. The injectivity of C_1 implies that y is unique, and it follows that there is an algebra isomorphism ψ of \mathfrak{A} into $\mathfrak{B}(\mathcal{K})$ such that $AC_i = C_i\psi(A)$ for all A and all i. In particular, $C_1\mathcal{K}$ is invariant under \mathfrak{A} and thus $C_1B = K$ for some operator B. Thus, by the equation $AK = K\phi(A)$,

$$C_1B\psi(A) = AC_1B = C_1\psi(A)B$$

and, therefore, $B\psi(A) = \psi(A)B$. Now, for each i,

$$AC_iB = C_i\psi(A)B = C_iB\psi(A),$$

and Lemma 1 implies that $C_iB = \alpha_iK = \alpha_iC_1B$ for some scalar α_i. Thus

$$y \oplus \alpha_2y \oplus \cdots \oplus \alpha_ny \in \mathcal{M},$$

for every $y \in K\mathcal{K}$. Since $K\mathcal{K}$ is dense in \mathcal{K},

$$\mathcal{M} = \{ y \oplus \alpha_2y \oplus \cdots \oplus \alpha_ny : y \in \mathcal{K} \}.$$

We have shown that every T_i is a scalar multiple of the identity on \mathcal{K}. The strong density of \mathfrak{A} in $\mathfrak{B}(\mathcal{K})$ now follows from Lemma 2.

Corollary 1. If in the lattice of invariant operator ranges for \mathfrak{A} the nonzero elements have a nonzero lower bound, then either \mathfrak{A} is strongly dense in $\mathfrak{B}(\mathcal{K})$ or it has a nontrivial closed, invariant subspace.

Proof. If this lower bound represents a dense range, we apply the above theorem; otherwise, the closure of this range is a nontrivial invariant subspace.

Corollary 2. If \mathfrak{A} is as in Corollary 1 and if \mathcal{M} is the lower bound for
nonzero, invariant operator ranges, then the restriction $\mathfrak{A}|\mathfrak{M}$ of \mathfrak{A} of the closure of \mathfrak{M} is dense in $B(\mathfrak{M})$.

PROOF. It is easily verified that \mathfrak{M} is the lower bound of the nonzero operator ranges invariant under $\mathfrak{A}|\mathfrak{M}$; thus the theorem is applicable.

QUESTIONS. One natural question poses itself: Can the lattice-theoretic hypothesis of the above results be weakened to require the mere existence of a minimal nonzero element in this lattice? What about the more special case where every nonzero member of the lattice is assumed to contain a minimal nonzero element?

REFERENCES

Department of Mathematics, Dalhousie University, Halifax, Nova Scotia, Canada