Proceedings of the American Mathematical Society

This journal is devoted entirely to research in pure and applied mathematics. The following statement was adopted by order of the Council of the American Mathematical Society on January 22, 1975.

Statement of Editorial Policy

To be published in the Proceedings, a paper must be correct, new, nontrivial and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Proceedings Editors shall solicit, and encourage publication of, worthy papers of length not exceeding 11 typed pages.

Blind Refereeing: Author's Responsibility

In January, 1975, the Council of the Society selected the Proceedings for a two-year experiment with "blind refereeing". Policy now in effect is that an author submitting a paper to the Proceedings shall send two manuscripts: one containing all pertinent personal data and the other not containing the author's name or institutional affiliation. This second copy will be refereed, and the Editor shall not reveal the name or institution of the author to the referee. It is not the responsibility of the Editor to suppress evidence internal to the paper, including the bibliography, from which the referee might determine the author's identity.

Authors are cautioned that the Editor may not initiate the refereeing process until two copies of the manuscript have been received from the author.

SUBSCRIPTION INFORMATION: Subscription prices for Volumes 68–72 (1978) are list $135.00, member $67.50 for either paper or microform. Back number prices per volume for Volumes 1–53 (1950–1975) are list $30.00, member $22.50; for Volumes 54–67 (1977), list $34.00, member $25.50.

Combination paper and microform (fiche or film) are $180.00 list, $90.00 member. Microfiche of each issue is mailed (first class or air mail) before the copy is sent to the printer.

BACKLOG: None. Papers currently being received by the editors will be published in 9–11 months.

MICROFILM EDITIONS: Back volumes of PROCEEDINGS are also available on 16 mm microfilm, either negative or positive, and may be mounted on spools or in Eastman or 3M cartridges. Volumes 1–61 (1950–1976) are mounted on 12 spools and cost $620.00 for spools or $662.00 for cartridges. Only current subscribers are eligible to purchase back volumes on microfilm.

THE PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY is published monthly. Subscriptions and orders for publications of the American Mathematical Society should be addressed to the American Mathematical Society, P. O. Box 1571, Annex Station, Providence, R.I. 02901. All orders must be accompanied by payment. Other correspondence should be addressed to P. O. Box 6248, Providence, R.I. 02940.

Second class postage paid at Providence, Rhode Island, and additional mailing offices. U.S. Postal Service Publication No. 445600.
Copyright © American Mathematical Society 1978
Printed in the United States of America
Preparation and Submission of Manuscript

1. Articles for insertion should be typewritten, double spaced, and no more than 11 pages (8 1/2" x 11") long. Ditto is not generally satisfactory, although other modes of multiple reproduction may be. The Manual for Authors, available from the Society, should be consulted for symbols and style conventions. Authors should take the greatest possible care in preparing the original manuscript. Hand drawn symbols are satisfactory, if clearly done; directions to the printer should be included where necessary on a separate sheet. Authors must keep a complete copy of their manuscript, and editors will acknowledge receipt.

2. The first page should consist of a descriptive title, followed by an abstract which summarizes the article in language suitable for workers in the general field (algebra, analysis, etc.). The descriptive title should be short, but informative; useless or vague phrases such as "some remarks about" or "concerning" should be avoided. The abstract should be at least one complete sentence, and at most 150 words. Included with the footnotes to the paper, but placed before the first footnote, there should be first the AMS (MOS) subject classification numbers representing the primary and secondary subjects of the article. This may be followed by a list of key words and phrases describing the subject matter of the article and taken from it. The AMS (MOS) Subject Classification Scheme (1970) with instructions for its use can be found as an appendix to Mathematical Reviews, Index to Volume 39 (June 1970). See the June 1970 Notices for more details, as well as illustrative examples.

3. Very short notes not to exceed 1 printed page are also accepted, and appear under the heading SHORTER NOTES. Items deemed suitable include an elegant new proof of an important and well-known theorem, an illuminating example or counterexample, or a new viewpoint on familiar results. New results, if of a brief and striking character, might also be acceptable, though in general a paper which is merely very short will not be suitable for the SHORTER NOTES department.

Reprints and Address Changes

Any inquiries concerning a paper which has been accepted for publication, including information regarding reprints or changes of address for mailing proof, should be sent directly to the Editorial Department, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940.

Galley Proof

When a paper with more than one author has been accepted for publication, only one set of galley proof will be sent. Joint authors should, therefore, indicate which of them should receive galley proof in the event that the manuscript is accepted for publication.
Submission of Manuscript

Send papers directly to one of the editors listed under the subject field of the paper. The numbers in parentheses are the first two digits of major classifications from the AMS (MOS) Subject Classification Scheme (1970) and describe the fields being handled by the editor.

LOGIC AND FOUNDATIONS (02 04)
Paul C. Eklof, Department of Mathematics, University of California, Irvine, California 92717

COMBINATORICS AND DISCRETE MATHEMATICS (05 15)
Thomas H. Brylawski, Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27514

COMMUTATIVE ALGEBRA (06 12 13 14 15 18)
David Eisenbud, Department of Mathematics, Brandeis University, Waltham, Massachusetts 02154

GENERAL ALGEBRA (16 17 18 08)
Robert L. Wilson, Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903

GROUP THEORY (20)
David M. Goldschmidt, Department of Mathematics, University of California at Berkeley, Berkeley, California 94720

ALGEBRAIC AND DIFFERENTIAL TOPOLOGY (55 57 58)
Reinhard E. Schultz, Department of Mathematics, Purdue University, West Lafayette, Indiana 47907

REAL VARIABLES (26 28 40)
J. Jerry Uhl, Jr., Department of Mathematics, University of Illinois, Urbana, Illinois 61801

COMPLEX VARIABLES AND ANALYTIC NUMBER THEORY (10 30 32)
W. E. Kirwan, Department of Mathematics, University of Maryland, College Park, Maryland 20742
Lawrence A. Zalcman, Department of Mathematics, University of Maryland, College Park, Maryland 20742

DIFFERENTIAL EQUATIONS (33 34 35 39 49)
Richard K. Miller, Department of Mathematics, Iowa State University, Ames, Iowa 50010

GENERAL ANALYSIS (41 42 43 44 45)
Richard R. Goldberg, Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37235

FUNCTIONAL ANALYSIS AND OPERATOR THEORY (46 47)
Chandler Davis, Department of Mathematics, University of California at Berkeley, Berkeley, California 94720
Ronald G. Douglas, Department of Mathematics, State University of New York at Stony Brook, Stony Brook, New York 11790
Robert R. Phelps, Department of Mathematics, University College London, Gower Street, London WC1E 6BT, England

GEOMETRY (22 50 52 53)
Joseph A. Wolf, Department of Mathematics, University of California at Berkeley, Berkeley, California 94720

GENERAL TOPOLOGY (54)
David J. Lutzer, Department of Mathematics, Texas Tech University, Lubbock, Texas 79409
Thomas A. Chapman, Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506

PROBABILITY AND OTHER FIELDS (31 60–99 inclusive)
Naresh Jain, School of Mathematics, 127 Vincent Hall, University of Minnesota, Minneapolis, Minnesota 55455

All other communications should be addressed to the Managing Editor, Joseph A. Wolf, at the above address.
CONTENTS

Vol. 68, No. 2 FEBRUARY 1978 Whole No. 224

A. ALGEBRA AND NUMBER THEORY

Maximal separable subfields. By BONNIE PAGE DANNER.. 125
Inverse-cycles in weak-inverse loops. By R. ARTZY... 132
Free Lie algebras as modules over their enveloping algebras. By JOHN P. LABUTE............. 135
Maximal subgroups of prime index in a finite solvable group. By PAUL VENZKE................. 140
Symmetry for finite dimensional Hopf algebras. By J. E. HUMPHREYS............................... 143
The perfect nth power which divides a nonzero polynomial. By ROGER CHALKLEY............... 147
A factorization theorem for groups and Lie algebras. By EUGENE SCHENKMAN.................... 149
A simple Noetherian ring not Morita equivalent to a domain. By J. T. STAFFORD.............. 159
Integral invariant functions on the nilpotent elements of a semisimple Lie algebra. By
MICHAEL A. GAUGER.. 161
Noncrossed products of small exponent. By DAVID J. SALTMAN....................................... 165

B. ANALYSIS

Existence and uniqueness of solutions to abstract Volterra integral equations. By T.
KIFFE and M. STECHER.. 169
A subnormal semigroup without normal extension. By ARTHUR LUBIN.............................. 176
On the Floquet problem for quasiperiodic systems. By J. A. MURDOCK............................. 179
A new generalization of the Sturm Comparison Theorem to selfadjoint systems. By
SHAIR AHMAD and ALAN C. LAZER... 185
On density of algebras with minimal invariant operator ranges. By HEYDAR RADJAVI........... 189
Inequality between the Bergman metric and Carathéodory differential metric. By
KYONG T. HAHN ... 193
Extremal holomorphic imbeddings between the ball and polydisc. By H. ALEXANDER........... 200

C. GEOMETRY

The volume of a slightly curved submanifold in a convex region. By B. V. DEKSTER......... 203

D. GEOMETRY

A generalized Kleene-Moschovakis theorem. By LEO HARRINGTON, LEFTERIS
KIROUSIS and JOHN SCHLIFF... 209
More on the connectivity of convex sets. By D. S. BRIDGES.. 214
Semisimple completely distributive lattices are Boolean algebras. By M. S. LAMBROU......... 217

E. LOGIC AND FOUNDATIONS

Intervals of continua which are Hilbert cubes. By CARL EBERHART.................................. 220
Elementary surgery manifolds and the elementary ideals. By J. P. NEUZIL.......................... 225
On the semi-canonical property in the product space $X \times I$. By A. OKUYAMA and Y.
YASUI... 229
On Urysohn-closed and minimal Urysohn spaces. By JAMES E. JOSEPH........................... 235
The Knapp-Stein dimension theorem for p-adic groups. By ALLAN J. SILBERGER.............. 243

SHORTER NOTES

Group rings whose units form a nilpotent or FC group. By M. M. PARMENTER and C.
POLCINO MILIES .. 247
A simple proof of Clarkson's inequality. By S. RAMASWAMY.. 249