DIVISIBILITY PROPERTIES OF THE q-TANGENT NUMBERS

GEORGE E. ANDREWS1 AND IRA GESSEL

Abstract. The q-tangent number $T_{2n+1}(q)$ is shown to be divisible by $(1 + q)(1 + q^2) \cdots (1 + q^n)$. Related divisibility questions are discussed.

1. Introduction. The tangent numbers T_{2n+1} are integers defined by

$$\sum_{n=0}^{\infty} \frac{T_{2n+1} x^n}{(2n+1)!} = \tan x.$$ \hfill (1.1)

Numerous properties of the tangent number are known; in particular [2, p. 259]:

$$T_{2n+1} = 4^{n+1} |G_{2n+2}| / (n + 1),$$ \hfill (1.2)

where G_n is an integer called the Genocchi number. Thus it is clear from (1.2) that T_{2n+1} is always divisible by a high power of 2.

A natural q-analog of the tangent numbers is given by

$$\sum_{n=0}^{\infty} \frac{T_{2n+1}(q) x^n}{(q)_{2n+1}} = \frac{\sin_q x}{\cos_q x},$$ \hfill (1.3)

where $(A)_n = (A; q)_n = (1 - A)(1 - Aq) \cdots (1 - Aq^{n-1})$; R. P. Stanley [4] has given a combinatorial interpretation of the polynomials $T_{2n+1}(q)$ which shows that all the coefficients are nonnegative.

One of us [3] has shown that $T_{2n+1}(q)$ is divisible by the cyclotomic polynomials $\phi_2(q), \phi_4(q), \ldots, \phi_{2^n}(q)$ through a study of properties of Gaussian polynomials in cyclotomic fields. Our object here is to derive the following result on q-tangent numbers which is analogous to the fact that T_{2n+1} is divisible by a high power of 2:

Theorem 1. The polynomial $T_{2n+1}(q)$ is divisible by $(1 + q)(1 + q^2) \cdots (1 + q^n)$.

We conclude with a few comments about other divisibility properties of $T_{2n+1}(q)$ that are derivable using our method. The assertion in Theorem 1 was a conjecture made by M. P. Schützenberger at the combinatorics

Received by the editors June 9, 1977.

AMS (MOS) subject classifications (1970). Primary 05A15, 05A19; Secondary 33A30.

1Partially supported by the National Science Foundation Grant MSP 74-07282.
conference at Oberwohlfach in February, 1975.

2. Proof of Theorem 1. To prove this result we require two lemmas.

Lemma 1. For nonnegative integers \(N \) and \(j \), the expression

\[
\left[\frac{2N+1}{2j} \right] \frac{(1 + q)(1 + q^2) \cdots (1 + q^j)}{(1 + q^N)(1 + q^{N-1}) \cdots (1 + q^{N-j+1})}
\]

is a polynomial in \(q \), where \(\left[\frac{N}{M} \right] \) is the Gaussian polynomial

\[
\left[\frac{N}{M} \right] = \frac{(q)_N}{(q)_M (q)_{N-M}}.
\]

Proof. Obviously the expression in question is a rational function and the roots of the denominator are roots of unity. To prove Lemma 1 we need only show that each zero of the denominator appears with at least as large multiplicity in the numerator as in the denominator.

Now if \(\rho \) is a primitive \(k \)th root of unity then \(\rho \) is a simple root of \(1 - q^M \) if and only if \(k \mid M \). Furthermore we know a priori (due to the recurrences for Gaussian polynomials) that \(\left[\frac{2N+1}{2j} \right] \) is a polynomial. Consequently for each integer \(l \) with \(1 \leq l < 2j \), we see that \(l \) must divide at least \(\left[\frac{2N+1}{2j} \right] \) of the numbers \(2N + 1, 2N, 2N - 1, \ldots, 2N - 2j + 2 \) (otherwise this Gaussian polynomial would not be a polynomial). Now

\[
\left[\frac{2N+1}{2j} \right] \frac{(1 + q)(1 + q^2) \cdots (1 + q^j)}{(1 + q^N)(1 + q^{N-1}) \cdots (1 + q^{N-j+1})} = \frac{(1 - q^{2N+1})(1 - q^N)(1 - q^{2N-1})(1 - q^{N-1}) \cdots (1 - q^{2N-2j+3})(1 - q^{N-j+1})}{(1 - q^l)(1 - q^{l-1})(1 - q^{l-2})(1 - q^{l-3}) \cdots (1 - q)(1 - q)}
\]

and one sees that this is the same as the expression for \(\left[\frac{2N+1}{2j} \right] \) except that each even exponent in numerator and denominator has been divided by 2. Thus the divisibility properties previously described are preserved since the only change is that \(j \) numerator exponents and \(j \) denominator exponents have been divided by 2 which of course does not affect whether a denominator exponent divides a numerator exponent (i.e. if \(l \) is odd and \(l \mid 2M \) then \(l \mid M \), if \(l \) is even and \(l \mid 2M \) then \(\frac{l}{2} \mid M \)). Thus the denominator of

\[
\left[\frac{2N+1}{2j} \right] \frac{(1 + q)(1 + q^2) \cdots (1 + q^j)}{(1 + q^N)(1 + q^{N-1}) \cdots (1 + q^{N-j+1})}
\]

has no zeros that are not cancelled by those of the numerator. This proves Lemma 1. □

Lemma 2. The \(q \)-tangent numbers satisfy
\[T_{2N+1}(q) + \sum_{j=1}^{N} (-q)^{2j-1} \left[\frac{2N + 1}{2j} \right] (-1)^j T_{2N+1-2j}(q) \]

(2.4)

\[= (-1)^N (-q)_{2N}; \]

where \((a)_n = (a; q)_n = (1 - a)(1 - aq) \cdots (1 - aq^{n-1}), (a)_0 = 1. \]

Proof. We have

(2.5) \[\sum_{n=0}^{\infty} \frac{T_{2n+1}(q)x^{2n+1}}{(q)_{2n+1}} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(q)_{2n+1}} / \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(q)_n}. \]

Now (here \(i = \sqrt{-1}\))

(2.6)

\[\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(q)_{2n+1}} = \sum_{n=0}^{\infty} \frac{i^{n-1}x^n}{(q)_n} \frac{(1 - (-1)^n)}{2} \]

(2.7)

\[= \frac{1}{2i} \left(\frac{1}{(ix)_\infty} - \frac{1}{(-ix)_\infty} \right) \quad \text{(by [1, p. 19, equation (2.2.5)]);} \]

\[\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(q)_{2n}} = \sum_{n=0}^{\infty} \frac{i^nx^n}{(q)_n} \frac{(1 + (-1)^n)}{2} \]

Therefore

\[\sum_{n=0}^{\infty} \frac{T_{2n+1}(q)x^{2n+1}}{(q)_{2n+1}} = \frac{1}{2i} \left(\frac{1}{(ix)_\infty} - \frac{1}{(-ix)_\infty} \right) / \frac{1}{2} \left(\frac{1}{(ix)_\infty} + \frac{1}{(-ix)_\infty} \right) \]

\[= \frac{1}{i} \frac{(-ix)_\infty - (ix)_\infty}{(-ix)_\infty + (ix)_\infty} = \frac{1}{i} \frac{(-ix)_\infty / (ix)_\infty - 1}{(-ix)_\infty / (ix)_\infty + 1}. \]

Clearing the denominator on the right and utilizing the \(q\)-binomial series

\[\sum (A)_n z^n = (Az)_\infty \]

[1, p. 17, equation (2.2.1)], we find that

\[\left(1 + \sum_{n=0}^{\infty} \frac{(-1)^n (ix)^n}{(q)_n} \right) \sum_{n=0}^{\infty} \frac{T_{2n+1}(q)x^{2n+1}}{(q)_{2n+1}} = \frac{1}{i} \sum_{n=1}^{\infty} \frac{(-1)_n (ix)^n}{(q)_n}. \]

Let us now compare the real parts of the coefficient of \(x^{2N+1}\) in this last identity:

\[2T_{2N+1}(q) + \sum_{j=1}^{N} (-1)^j \left[\frac{2N + 1}{2j} \right] (-1)^j T_{2N+1-2j}(q) = (-1)_{2N+1}(-1)^N, \]

and if we divide each side of this identity by 2 we obtain the result stated in Lemma 2. □
Theorem 1. The polynomial \((1 + q)(1 + q^2) \cdots (1 + q^N)\) divides the polynomial \(T_{2N+1}(q)\).

Proof. The result is immediate for \(N = 0, 1\) since \(T_1 = 1\) and \(T_3 = q(1 + q)\). Let us now assume the result true up to but not including \(N\).

Now
\[
(-q)^{2j-1} \left[\frac{2N + 1}{2j} \right] = (-q)^j (-q^{j+1})^{j-1} \left[\frac{2N + 1}{2j} \right] = (1 + q^N)(1 + q^{N-1}) \cdots (1 + q^{N-j+1}) (-q^{j+1})^{j-1}
\]
\[
\times \frac{(1 + q)(1 + q^2) \cdots (1 + q^j)}{(1 + q^N)(1 + q^{N-1}) \cdots (1 + q^{N-j+1})} \left[\frac{2N + 1}{2j} \right].
\]
Hence by Lemma 1, \((1 + q^N)(1 + q^{N-1}) \cdots (1 - q^{N-j+1})\) is factor of the polynomial \((-q)^{2j-1} \left[\frac{2N + 1}{2j} \right]\). By the induction hypothesis \((1 + q)(1 + q^2) \cdots (1 + q^{N-j})\) is a factor of \(T_{2N+1-2j}(q)\). Hence for \(1 < j < N\), we see that \((-q)^N\) is a factor of
\[
(-1)^j (-q)^{2j-1} \left[\frac{2N + 1}{2j} \right] T_{2N+1-2j}(q),
\]
and since \((-q)^N\) is obviously a factor of \((-q)^{2N}\) we deduce from Lemma 2 that \((-q)^N\) is a factor of \(T_{2N+1}(q)\) as well. Thus Theorem 1 follows by induction.

3. Conclusion. First we note that the result mentioned in the Introduction about the divisibility of the \(T_{2n+1}(q)\) by the cyclotomic polynomials \(\Phi_2(q), \Phi_4(q), \ldots, \Phi_{2n}(q)\) now follows from Theorem 1 since \(\Phi_{2n}(q)\) divides \((1 + q^n)\).

We also note that the divisibility of \(T_{2n+1}(q)\) by specific factors of the form \(1 + q^j\) can be handled again by Lemma 2. For example:

Theorem 2. The polynomial \((1 + q)^n\) is a factor of the \(q\)-tangent number \(T_{2n+1}(q)\).

Proof. The result is obvious for \(n = 0, 1\) since \(T_1(q) = 1\) and \(T_3(q) = q(1 + q)\). Assume the theorem true up to but not including \(n\). Now since \(1 + q^{2M+1} = (1 + q)(1 - q + q^2 - \cdots + q^{2M})\), we see that \((1 + q)^j\) is a factor of \((-q)^{2j-1}\). By the induction hypothesis \((1 + q)^{N-j}\) is a factor of \(T_{2N+1-2j}(q)\). Hence \((1 + q)^N\) is a factor of
\[
(-q)^{2j-1} \left[\frac{2N + 1}{2j} \right] (-1)^j T_{2N+1-2j}(q),
\]
and since \((1 + q)^N\) is also a factor of \((-q)^{2N}\), we deduce from Lemma 2 that \((1 + q)^N\) is a factor of \(T_{2N+1}(q)\).

References

3. I. Gessel, *Exponential generating functions (mod p) and their q-analogs* (in prep.).

DEPARTMENT OF MATHEMATICS, PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVANIA 16802 (Current address of G. E. Andrews)

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139

Current address (Ira Gessel): IBM T. J. Watson Research Center, Yorktown Heights, New York 10598