Nonlinear Fredholm maps of index zero and their singularities
HTML articles powered by AMS MathViewer
- by R. A. Plastock
- Proc. Amer. Math. Soc. 68 (1978), 317-322
- DOI: https://doi.org/10.1090/S0002-9939-1978-0464283-2
- PDF | Request permission
Abstract:
Let $F:X \to Y$ be a ${C^1}$ Fredholm map of index zero between two Banach spaces. Defining the singular set $B = \{ x|F’(x)$ is not surjective}, we study the local and global effect of B on the map F. In particular it is shown that if $b \in B$ is isolated in B, then, for $\dim X$ and $\dim Y \geqslant 3$, F is a local homeomorphism at b. We then show that if B consists of discrete points, F is a global homeomorphism of X onto Y. A nonlinear partial differential equation is included as an illustration.References
- S. Banach and S. Mazur, Über mehrdeutige stetige Abbildungen, Studia Math. 5 (1934), 174-178.
- Melvin S. Berger, Nonlinearity and functional analysis, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1977. Lectures on nonlinear problems in mathematical analysis. MR 0488101
- Roy Plastock, Homeomorphisms between Banach spaces, Trans. Amer. Math. Soc. 200 (1974), 169–183. MR 356122, DOI 10.1090/S0002-9947-1974-0356122-6
- S. Smale, An infinite dimensional version of Sard’s theorem, Amer. J. Math. 87 (1965), 861–866. MR 185604, DOI 10.2307/2373250
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- A. J. Tromba, Some theorems on Fredholm maps, Proc. Amer. Math. Soc. 34 (1972), 578–585. MR 298713, DOI 10.1090/S0002-9939-1972-0298713-0
- M. S. Berger and R. A. Plastock, On the singularities of nonlinear Fredholm operators, Bull. Amer. Math. Soc. 83 (1977), no. 6, 1316–1318. MR 451279, DOI 10.1090/S0002-9904-1977-14431-5
- William H. Cutler, Negligible subsets of infinite-dimensional Fréchet manifolds, Proc. Amer. Math. Soc. 23 (1969), 668–675. MR 248883, DOI 10.1090/S0002-9939-1969-0248883-5
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 68 (1978), 317-322
- MSC: Primary 58B15; Secondary 47H15
- DOI: https://doi.org/10.1090/S0002-9939-1978-0464283-2
- MathSciNet review: 0464283