Global characterizations of the sphere
HTML articles powered by AMS MathViewer
- by George Stamou
- Proc. Amer. Math. Soc. 68 (1978), 328-330
- DOI: https://doi.org/10.1090/S0002-9939-1978-0467620-8
- PDF | Request permission
Abstract:
Let S be an ovaloid in Euclidean three-space ${E^3}$ with Gaussian curvature $K > 0$ and let ${K_{{\text {II}}}}$ be the curvature of the second fundamental form II of S. We give some global characterizations of the sphere by the curvature ${K_{{\text {II}}}}$ which generalize some results of R. Schneider [4], D. Koutroufiotis [2] and the well-known “H-Satz” theorem of H. Liebmann.References
- Pierre Jean Erard, Über die zweite Fundamentalform von Flächen im Raum, Abhandlung zur Erlangung der Würde eines Doktors der Mathematik der Eidgenössischen Technischen Hochschule Zürich, Eidgenössische Technische Hochschule Zürich, Zürich, 1968 (German). Dissertation No. 4234. MR 0288670
- Dimitri Koutroufiotis, Two characteristic properties of the sphere, Proc. Amer. Math. Soc. 44 (1974), 176–178. MR 339025, DOI 10.1090/S0002-9939-1974-0339025-8
- Detlef Laugwitz, Differentialgeometrie, B. G. Teubner, Stuttgart, 1968 (German). Zweite, durchgesehene Auflage. MR 0243432
- Rolf Schneider, Closed convex hypersurfaces with second fundamental form of constant curvature, Proc. Amer. Math. Soc. 35 (1972), 230–233. MR 307133, DOI 10.1090/S0002-9939-1972-0307133-1
- Udo Simon, Characterizations of the sphere by the curvature of the second fundamental form, Proc. Amer. Math. Soc. 55 (1976), no. 2, 382–384. MR 405301, DOI 10.1090/S0002-9939-1976-0405301-5
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 68 (1978), 328-330
- MSC: Primary 53C45
- DOI: https://doi.org/10.1090/S0002-9939-1978-0467620-8
- MathSciNet review: 0467620