Interchanging iterated integration
HTML articles powered by AMS MathViewer
- by Lawrence Lessner
- Proc. Amer. Math. Soc. 68 (1978), 295-299
- DOI: https://doi.org/10.1090/S0002-9939-1978-0473134-1
- PDF | Request permission
Abstract:
If $k(x,y)$ is a measurable, real valued, finite a.e. function on $X \times Y$, then necessary and sufficient conditions are given for the two iterated Lebesgue integrals of $k(x,y)$ to be equal and finite by employing Saks’ theorem on the convergence of a sequence of finite measures and the Vitali convergence theorem. The conditions, more general than those of either Fubini’s or Tonelli’s theorems in this case, are applied to an example of a nonintegrable function to show that its iterated integrals are in fact equal and finite.References
- Adriaan Cornelis Zaanen, Integration, North-Holland Publishing Co., Amsterdam; Interscience Publishers John Wiley & Sons, Inc., New York, 1967. Completely revised edition of An introduction to the theory of integration. MR 0222234
- Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR 0033869 N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1967.
- Anthony L. Peressini, Ordered topological vector spaces, Harper & Row, Publishers, New York-London, 1967. MR 0227731
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 68 (1978), 295-299
- MSC: Primary 28A35
- DOI: https://doi.org/10.1090/S0002-9939-1978-0473134-1
- MathSciNet review: 0473134