A generalization of von Neumann’s inequality to the complex ball
HTML articles powered by AMS MathViewer
- by S. W. Drury
- Proc. Amer. Math. Soc. 68 (1978), 300-304
- DOI: https://doi.org/10.1090/S0002-9939-1978-0480362-8
- PDF | Request permission
Abstract:
A necessary and sufficient condition is found for a polynomial Q of J variables to be such that $Q({A_1}, \ldots ,{A_J})$ is a contraction whenever ${A_j}(1 \leqslant j \leqslant J)$ are commuting linear operators on complex hilbert space satisfying $\Sigma _{j = 1}^JA_j^ \ast {A_j} \leqslant I$.References
- Johann von Neumann, Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr. 4 (1951), 258–281 (German). MR 43386, DOI 10.1002/mana.3210040124
- M. J. Crabb and A. M. Davie, von Neumann’s inequality for Hilbert space operators, Bull. London Math. Soc. 7 (1975), 49–50. MR 365179, DOI 10.1112/blms/7.1.49
- N. Th. Varopoulos, On an inequality of von Neumann and an application of the metric theory of tensor products to operators theory, J. Functional Analysis 16 (1974), 83–100. MR 0355642, DOI 10.1016/0022-1236(74)90071-8
- Béla Sz.-Nagy and Ciprian Foiaş, Harmonic analysis of operators on Hilbert space, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970. Translated from the French and revised. MR 0275190
- Charles F. Dunkl and Donald E. Ramirez, Topics in harmonic analysis, The Appleton-Century Mathematics Series, Appleton-Century-Crofts [Meredith Corporation], New York, 1971. MR 0454515
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 68 (1978), 300-304
- MSC: Primary 47A30
- DOI: https://doi.org/10.1090/S0002-9939-1978-0480362-8
- MathSciNet review: 480362