ALGEBRAIC QUOTIENTS OF BERGMAN DOMAINS

GONZALO G. RIERA

Abstract. A discrete group of automorphisms of a domain in \(\mathbb{C}^n \) is constructed so that the quotient is algebraic.

A Bergman domain in \(\mathbb{C}^n \) is a set \(D = \{(z_1, \ldots, z_n)/z_1 \in U, z_{i+1} \in B_{i+1}(z_1, \ldots, z_i), i = 1, \ldots, n - 1\} \) where \(B_{i+1} \) is a Jordan domain in \(\mathbb{C} \) whose boundary admits a parametric representation

\[
\zeta_{i+1} = W(z_1, \ldots, z_i; x), \quad x \in \mathbb{R}.
\]

For fixed \(x \) \(W \) is a holomorphic function of \((z_1, \ldots, z_i) \in D_i \), the projection of \(D \) onto the first \(i \) coordinates.

Given an arbitrary quasi-projective algebraic variety \(A_0 \) there is a Zariski open subset \(A_1 \subset A_0 \) such that the universal covering of \(A_1 \) is a Bergman domain (cf. Griffiths \[2\], Bers \[1\]). In this note we prove a partial converse to the theorem above, namely that a discrete group of analytic automorphisms of \(D \), obtained as an extension of certain Fuchsian groups of finite type, gives as quotient an algebraic variety.

Let \(\mu \) be a measurable function in the upper half plane \(U \) with \(\| \mu \|_{\infty} < 1 \). We denote by \(W^\mu \) the unique homeomorphic solution of the Beltrami equation

\[
\frac{\partial W^\mu}{\partial \bar{z}} = \mu \frac{\partial W^\mu}{\partial z}
\]

fixing 0, 1 and \(\infty \), where \(\mu \) is extended by 0 to the lower half plane. The domains considered here are to satisfy the following additional property:

For any point \(\zeta \in D_i \) there is a neighborhood \(\zeta \in V \subset D_i \) and a holomorphic function \(\alpha_i: V \to L^\infty(U) \) such that \(B_{i+1} = W^{\alpha_i(z)}(U) \) for all \(z \in V \).

Consider an ascending chain of groups

\[
\{1\} = G_0 \supset G_1 \supset \cdots \supset G_n = G
\]

where \(G_{i+1} \) is a split extension \(G_i \) by a Fuchsian group \(H_i \) (0 \(\leq i \leq n - 1 \)). Assume further that there is an analytic function \(f_i: D_i \to T(H_i) \) into the Teichmüller space of \(H_i \), "coinciding" with \(\alpha_i \) in each neighborhood \(V \), such that \(f_i \) maps \(G_i \) into a subgroup of the Teichmüller modular group \(\text{Mod}(H_i) \).

It is then possible (cf. Riera \[4\]) to define by recurrence an action of \(G_{i+1} \) on \(D_{i+1} \) by means of the formula

Received by the editors February 17, 1977.

© American Mathematical Society 1978
(g, h)(z, \xi) = \left(g(z), W^{f(z)}(z) \circ h \circ \delta_i(g) \circ \left(W^{f(z)}(z) \right)^{-1}(\xi) \right)

for all z \in D_i, \xi \in B_{i+1}, g \in G_i, h \in H_i, where \delta_i is an appropriate homomorphism from G_i into a group mod(H_i).

Theorem. Let G be a group of analytic automorphisms of a Bergman domain D, obtained by a chain of split extensions of Fuchsian groups H_i of finite type (P_i, K_i), 0 < i < n - 1. If K_i = 0 for 0 < i < n - 2, then D/G is a quasi-projective algebraic variety.

Proof. If \(\phi_i, \psi_i \) denote fundamental regions for G_i and H_i respectively, then a fundamental region for G_{i+1} on D_{i+1} is the set

\[\phi_{i+1} = \left\{ (z, \xi) : z \in \phi_i, \xi \in W^{f(z)}(\psi_i) \right\}. \]

It follows from the assumptions that the fundamental region of G_{n-1} is compact; i.e., \(D_{n-1}/G_{n-1} \) is a compact manifold. The Bergman metric on \(D_{n-1} \) projects to the quotient and gives a Hodge metric; therefore \(D_{n-1}/G_{n-1} \) is an algebraic variety (cf. Kodaira [3]).

The quotient \(U/H_{n-1} = S \) is a compact Riemann surface \(\tilde{S} \) from which \(K_{n-1} \) points \(\alpha_1, \ldots, \alpha_{K_{n-1}} \) have been removed. Let \(\tilde{H}_{n-1} \) be a Fuchsian group representing \(\tilde{S} \) and let \(\alpha_1, \ldots, \alpha_{K_{n-1}} \in U \) project to \(\alpha_1, \ldots, \alpha_{K_{n-1}} \) in this representation. Now let \(\pi : U \to U \) be a universal covering map of \(U \setminus \{ g(\alpha_p), 1 < p < K_{n-1}/g \in \tilde{H}_{n-1} \} \), that conjugates \(H_{n-1} \) onto \(\tilde{H}_{n-1} \).

For fixed \(z \in D_{n-1} \) let \mu denote a Beltrami differential in the class \(f(z) \in T(H_{n-1}) \). We project down to \(\tilde{H}_{n-1} \) by the formula

\[\mu' = \mu \cdot \pi^{-1}/\pi' \]

to obtain a new function \(\tilde{f} : D_{n-1} \to T(\tilde{H}_{n-1}) \) associating \(z \) to \(\tilde{\mu} \). We observe that the points \(W^{f(z)}(\alpha_p), 1 < p < K_{n-1} \), are well defined since they are determined entirely by the class \(f(z) \). Thus we have constructed an extension \(\tilde{G} \) of \(G_{n-1} \) by \(\tilde{H}_{n-1} \) that acts on a domain \(\tilde{D} \). Write \(\tilde{M} = D/G, \tilde{M} = \tilde{D}/\tilde{G} \). Since \(\tilde{M} \) is compact there exist functions \(\phi_1, \ldots, \phi_n \) that embed \(\tilde{M} \) into \(\mathbb{P}^N \) for some \(N \); the image in \(\mathbb{P}^N \) is an algebraic variety \(A_0 \).

Finally, the functions

\[z \mapsto \left(\phi_1(z, W^{f(z)}(\alpha_p)), \ldots, \phi_N(z, W^{f(z)}(\alpha_p)) \right), \]

\(1 < p < K_{n-1} \), induce regular mappings from the algebraic variety \(D_{n-1}/G_{n-1} \) into \(A_0 \). The image \(B \) is then a Zariski closed set in \(A_0 \) and \(M \) is isomorphic to \(A_1 = A_0 \setminus B \).

References

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY, NEW YORK, NEW YORK 10027

Current address: Matematicas Universidad Tecnica del Estado, Casilla 4823, Correo 2, Santiago, Chile