A metric inequality characterizing barycenters and other Pettis integrals
HTML articles powered by AMS MathViewer
- by Russell G. Bilyeu
- Proc. Amer. Math. Soc. 68 (1978), 323-326
- DOI: https://doi.org/10.1090/S0002-9939-1978-0500140-0
- PDF | Request permission
Abstract:
Certain Pettis integrals, including barycenters of probability measures on weakly compact subsets of Banach spaces, are characterized by an integral inequality which refers only to distances between points, avoiding any reference to the linear structure of the Banach space. This is an elaboration of the Mazur-Ulam discovery that the metric determines the linear structure.References
- Erik M. Alfsen, Compact convex sets and boundary integrals, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 57, Springer-Verlag, New York-Heidelberg, 1971. MR 0445271
- Edgar Asplund, Fréchet differentiability of convex functions, Acta Math. 121 (1968), 31–47. MR 231199, DOI 10.1007/BF02391908
- Russell G. Bilyeu, Metric definition of the linear structure, Proc. Amer. Math. Soc. 25 (1970), 205–206. MR 259562, DOI 10.1090/S0002-9939-1970-0259562-0 S. Bochner, Integration von Funktionen deren Wert die Elemente eines Vektorraumes sind, Fund. Math. 20 (1933), 262-276.
- A. Grothendieck, Sur les applications linéaires faiblement compactes d’espaces du type $C(K)$, Canad. J. Math. 5 (1953), 129–173 (French). MR 58866, DOI 10.4153/cjm-1953-017-4
- B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), no. 2, 277–304. MR 1501970, DOI 10.1090/S0002-9947-1938-1501970-8
- Dorothy Wolfe, Metric inequalities and convexity, Proc. Amer. Math. Soc. 40 (1973), 559–562. MR 319045, DOI 10.1090/S0002-9939-1973-0319045-9
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 68 (1978), 323-326
- MSC: Primary 46G10
- DOI: https://doi.org/10.1090/S0002-9939-1978-0500140-0
- MathSciNet review: 0500140