Approximability of the inverse of an operator
HTML articles powered by AMS MathViewer
- by Avraham Feintuch
- Proc. Amer. Math. Soc. 69 (1978), 109-110
- DOI: https://doi.org/10.1090/S0002-9939-1978-0461178-5
- PDF | Request permission
Abstract:
Let A be an invertible operator on a complex Hilbert space $\mathcal {H}$. A necessary and sufficient condition is given for ${A^{ - 1}}$ to be a weak limit of polynomials in A.References
- Allen Devinatz and Marvin Shinbrot, General Wiener-Hopf operators, Trans. Amer. Math. Soc. 145 (1969), 467–494. MR 251573, DOI 10.1090/S0002-9947-1969-0251573-0
- Avraham Feintuch, On invertible operators and invariant subspaces, Proc. Amer. Math. Soc. 43 (1974), 123–126. MR 331082, DOI 10.1090/S0002-9939-1974-0331082-8
- Avraham Feintuch, On algebras generated by invertible operators, Proc. Amer. Math. Soc. 63 (1977), no. 1, 66–68. MR 435929, DOI 10.1090/S0002-9939-1977-0435929-9
- Ronald G. Douglas, Banach algebra techniques in operator theory, Pure and Applied Mathematics, Vol. 49, Academic Press, New York-London, 1972. MR 0361893
- Heydar Radjavi and Peter Rosenthal, Invariant subspaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 77, Springer-Verlag, New York-Heidelberg, 1973. MR 0367682
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 69 (1978), 109-110
- MSC: Primary 47A50; Secondary 47C05
- DOI: https://doi.org/10.1090/S0002-9939-1978-0461178-5
- MathSciNet review: 0461178