BOUNDED SETS IN INDUCTIVE LIMITS

J. KUCERA AND K. MCKENNON

Abstract. The Dieudonné-Schwartz theorem for bounded sets in strict inductive limits does not hold for general inductive limits. A set B bounded in an inductive limit $E = \text{ind lim } E_n$ of locally convex spaces may not be contained in any E_n. If, however, each E_n is closed in E, then B is contained in some E_n, but may not be bounded there.

Let $E_1 \subset E_2 \subset \ldots$ be a sequence of locally convex spaces and $E = \text{ind lim } E_n$ their inductive limit (with respect to the identity maps $\text{id}: E_n \rightarrow E_{n+1}$). It is proved in [2, Chapter 2, §12], that a set $B \subset E$ is bounded iff it is contained and bounded in some E_n, provided that

(H-1) E_n is closed in E_{n+1} for each $n \in N$,
(H-2) for each $n \in N$, the topology of E_n coincides with the topology induced on E_n by E_{n+1}.

These two hypotheses imply [2, Chapter 2, §12]

(H-3) E_n is closed in E for each $n \in N$.

If we replace H-1 and H-2 by H-3, any set bounded in E must still be contained in some E_n. But, as Example 1 shows, it may not be bounded in any E_m, $m > n$. Example 2 shows that, if we assume only H-1 instead of H-3, there may exist sets bounded in E but not contained in any E_n.

Theorem. Let H-3 hold and B be bounded in E. Then $B \subset E_n$ for some n.

Proof. Assume the contrary. Without loss of generality, we may assume that there exists a sequence b_1, b_2, \ldots in B such that $b_n \in E_n \setminus E_{n-1}$, $E_0 = \{0\}$, for all $n \in N$.

Since $b_1 \neq 0$, there exists a convex neighborhood G_1 of 0 in E such that $b_1 \notin G_1 + G_1$. Put $V_1 = G_1 \cap E_1$. Then V_1 is a neighborhood of 0 in E_1 and $b_1 \notin V_1$. Suppose that in each E_k, $k = 1, 2, \ldots, n$ a neighborhood V_k of 0 was chosen so that $V_1 \subset V_2 \subset \ldots \subset V_n$ and $b_m/m \notin (V_1 + \cdots + V_n)^E$, $m = 1, 2, n$. Put, for brevity, $W_k = (V_1 + \cdots + V_k)^E$. Since E_n is closed in E, $W_n \subset E_n$ and there exists a convex neighborhood G_{n+1} of 0 in E such that

$$\frac{1}{m} b_m \notin W_n + G_{n+1} + G_{n+1} \quad \text{for all } m = 1, 2, \ldots, n + 1.$$
The set $V_{n+1} = G_{n+1} \cap E_{n+1}$ is a neighborhood of 0 in E_{n+1} and

$$W_{n+1} = (V_1 + \cdots + V_{n+1})^E \subset V_1 + \cdots + V_{n+1}$$

$$+ G_{n+1} \subset V_1 + \cdots + V_n + G_{n+1} + G_{n+1} \subset W_n + G_{n+1} + G_{n+1}.$$

This implies $b_m/m \notin W_{n+1}$ for $m = 1, 2, \ldots, n+1$.

The union of the nest $\{W_n; n \in \mathbb{N}\}$ is a neighborhood of 0 in E which does not contain any b_m/m, $m \in \mathbb{N}$, and therefore does not absorb B.

The following notation is useful for our examples. For each $n \in \mathbb{N}$, n will denote the set $(1, 2, \ldots, n)$ and $\mathbb{N} \setminus n$ the complement of n in \mathbb{N}. Then, for instance, $A^n \times B^{\mathbb{N} \setminus n}$ denotes the set of all sequences of which the first n terms are in A and the remainder in B.

Example 1. Let X be an infinite dimensional Banach space, L its underlying linear space, and Y the space L endowed with its finest locally convex topology. Let, for each $n \in \mathbb{N}$, E_n be the locally convex product $X^n \times Y^{\mathbb{N} \setminus n}$. As linear spaces, all the E_n can be identified with L^n. The natural inductive limit $E = \text{ind lim } E_n$ can be as well. That $\text{H-3 holds, is trivial.}$

Claim. $E = X^n$. That the topology on E is as fine as the product topology is evident. Let W be any convex neighborhood of 0 in E. Then W is a neighborhood of 0 in E_1 and so there exists some $n \in \mathbb{N}$ and U a neighborhood of 0 in Y^n such that

$$Q_1 = U^n \times L^{\mathbb{N} \setminus n} \subset W.$$

Since W is also a neighborhood of 0 in E, there exists neighborhoods of 0, S in X and V in Y and an integer $m \in \mathbb{N}$ such that

$$Q_2 = (2S)^n \times V^m \times L^{\mathbb{N} \setminus n + m} \subset W.$$

Thus we have

$$S^n \times L^{\mathbb{N} \setminus n} \subset \frac{1}{2} Q_1 + \frac{1}{2} Q_2 \subset W.$$

But $S^n \times L^{\mathbb{N} \setminus n}$ is a neighborhood of X^n, which proves our claim.

Finally we note on the one hand that, if B is the unit ball in X, then B^n is bounded in $E = X^n$, but, on the other hand, since B is not finite dimensional and so unbounded in Y, B^n is unbounded in each E_n.

Example 2. Let X, Y, and B be as in Example 1, Z a proper dense linear subspace of X endowed with its finest locally convex topology, and D be $B \cap Z$. For each $n \in \mathbb{N}$, let E_n be the locally convex product $X^n \times Y \times Z^{\mathbb{N} \setminus n+1}$ and let E be the inductive limit $\text{ind lim } E_n$ (with respect to the identity mapping id: $E_n \to E_{n+1}$). Since every linear subspace of Z is closed, it is evident that each E_n is closed in E_{n+1}: that H-1 holds.

Claim. D^n is bounded in E. Let G be any convex neighborhood of 0 in E. Then $G \cap E_1$ is a neighborhood of 0 in E_1 and so there exist neighborhoods of 0, U in Y and A in Z such that

$$Q_1 = U^2 \times A^n \times Z^{\mathbb{N} \setminus n+2} \subset G \text{ for some } n \in \mathbb{N}.$$

Further $G \cap E_n$ is a neighborhood of 0 in E_n and so there exist neighborhoods of 0, S of X, T of Y, and V of Z such that
\[Q_2 = (2S)^{n+2} \times T \times V^m \times Z^{N \backslash n+m+3} \subset G \quad \text{for some } m \in N. \]

The set \(S^{n+2} \times Z^{N \backslash n+2} \) absorbs \(D^N \) and
\[S^{n+2} \times Z^{N \backslash n+2} \subset 1/2 Q_1 + 1/2 Q_2 \subset G. \]

Hence \(G \) absorbs \(D \), which proves our claim.

If \(a \in B^N \cap E \), then \(a \in B^N \cap E_n \) for some \(n \in N \) and so \(a \) is a limit of a sequence in \(D^N \). Hence \(B^N \cap E \) is the closure of the bounded set \(D^N \), and so is bounded itself. But evidently \(B^N \cap E \) is not contained in any \(E_n \). Thus, though H-1 holds, it follows from the theorem of this paper that H-3 does not.

REFERENCES