Orthogonal decomposition of isometries in a Banach space
HTML articles powered by AMS MathViewer
- by G. D. Faulkner and J. E. Huneycutt
- Proc. Amer. Math. Soc. 69 (1978), 125-128
- DOI: https://doi.org/10.1090/S0002-9939-1978-0463954-1
- PDF | Request permission
Abstract:
In this paper the Wold decomposition theorem is proved for a class of isometries in smooth reflexive Banach spaces. The class in particular contains all isometries of ${L^p}(\mu )$ spaces for arbitrary measures $\mu$.References
- Gary D. Faulkner, Representation of linear functionals in a Banach space, Rocky Mountain J. Math. 7 (1977), no. 4, 789–792. MR 448034, DOI 10.1216/RMJ-1977-7-4-789
- J. R. Giles, Classes of semi-inner-product spaces, Trans. Amer. Math. Soc. 129 (1967), 436–446. MR 217574, DOI 10.1090/S0002-9947-1967-0217574-1
- D. Koehler and Peter Rosenthal, On isometries of normed linear spaces, Studia Math. 36 (1970), 213–216. MR 275209, DOI 10.4064/sm-36-3-213-216
- John Lamperti, On the isometries of certain function-spaces, Pacific J. Math. 8 (1958), 459–466. MR 105017
- G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29–43. MR 133024, DOI 10.1090/S0002-9947-1961-0133024-2
- Gunter Lumer, On the isometries of reflexive Orlicz spaces, Ann. Inst. Fourier (Grenoble) 13 (1963), 99–109. MR 158259
- T. Andô, Contractive projections in $L_{p}$ spaces, Pacific J. Math. 17 (1966), 391–405. MR 192340
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 69 (1978), 125-128
- MSC: Primary 47A65
- DOI: https://doi.org/10.1090/S0002-9939-1978-0463954-1
- MathSciNet review: 0463954