A note on Killing torsion of manifolds by surgery
HTML articles powered by AMS MathViewer
- by Stavros Papastavridis
- Proc. Amer. Math. Soc. 69 (1978), 181-182
- DOI: https://doi.org/10.1090/S0002-9939-1978-0464266-2
- PDF | Request permission
Abstract:
In this note we prove that every manifold of dimension different than 3, oriented in a bundle theory (for most bundle theories), is cobordant to a manifold which contains not more torsion than the classifying space of the bundle theory.References
- William Browder, Surgery on simply-connected manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 65, Springer-Verlag, New York-Heidelberg, 1972. MR 0358813
- R. Lashof, Poincaré duality and cobordism, Trans. Amer. Math. Soc. 109 (1963), 257–277. MR 156357, DOI 10.1090/S0002-9947-1963-0156357-4
- R. E. Stong, Torsion in manifolds and the semicharacteristic, Indiana Univ. Math. J. 25 (1976), no. 10, 989–993. MR 431222, DOI 10.1512/iumj.1976.25.25078
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 69 (1978), 181-182
- MSC: Primary 57D90
- DOI: https://doi.org/10.1090/S0002-9939-1978-0464266-2
- MathSciNet review: 0464266