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A NOTE ON KILLING TORSION OF MANIFOLDS BY

SURGERY

STAVROS PAPASTAVRIDIS

Abstract. In this note we prove that every manifold of dimension different

than 3, oriented in a bundle theory (for most bundle theories), is cobordant

to a manifold which contains not more torsion than the classifying space of

the bundle theory.

We will give here a generalization (with simpler proof) of a theorem of R.

Stong which says that every closed oriented manifold is cobordant, in the

oriented sense, to an oriented manifold whose homology contains no odd

torsion [3].

Definition 1. If G is an abelian group, then Tor G is the subgroup of G

which consists of torsion elements. Let G = (G0, G„ . . . ) and H =

(Hq, //„...) be graded abelian groups, then we say that "the torsion of G is

contained in the torsion of //", if and only if for every i there is ay such that

Tor G, is isomorphic with a subgroup of Tor //,.

Let /.: Xr -» BO(r) be a sequence of fibrations with maps gr: A, -» Ar+1

such that the usual diagram commutes. For such a situation R. Lashof defines

the concept of ^-structure on manifolds (see [2]) and proves a Thom-

isomorphism for the bordism groups of such manifolds. It is well known that

many of the usual classes of manifolds may be described in terms of

A-structures, e.g. SO, U, Spin, etc. We assume that for r big enough Xr has a

finite number of cells in each dimension, and that the map (gr)^: Hj(Xr;

Z) -» H^(Xr+l; Z) "stabilizes" (namely for given n, it is an isomorphism up

to dimension n, provided that r is big enough). Finally we assume that

/*(w,) - 0, for r very big. Let H,(X) = ind lim Hm(Xr; Z).

Theorem 2. Every even dimensional, closed, X-manifold is X-cobordant to a

manifold whose torsion is contained in the torsion of Ht(X).

Theorem 3. If Xr is simply connected for r big enough, then every (4k + 1)-

dimensional X-manifold is X-cobordant to a manifold whose torsion is contained

in the torsion of HM(X).

Theorem 4. If Xr is simply connected for r big enough, and H2k_x(X)

contains no p-torsion for certain prime numbers p (we take k > 1), then every
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(4k — I)-dimensional X-manifold is X-cobordant to a manifold whose torsion is

contained in the torsion of Ht(X) in dimensions different than (2k — 1), and in

dimension (2k — 1) contains nop-torsion for the same prime numbers.

Proof of Theorems 2,3. Let v; M —» Xr be the normal map induced by the

A'-structure of M. We take r very big. Let m be the dimension of M.

By surgery (see Theorem IV. 1.13 of [1]) we can make the map v an

isomorphism in homology up to dimension [m/2] — 1, provided m > 4.

If Xr is simply connected and m is of the form (4k + 1) (we take k

positive), then we can squeeze in an extra dimension to make v a

monomorphism in homology up to dimension [m/2]. This is proved exactly

like Theorem IV.2.1 of [1].

And the proof follows from Poincaré duality and the fact that from the

universal coefficient theorem, for any topological space Y, we have

Tor H'(Y; Z) = Tor^,_,(T; Z). The cases of 1, 2-dimensional manifolds

offer no difficulty because such manifolds are torsion free.

Proof of Theorem 4. As before, let v: M-*Xr be the normal map

induced by the A'-structure of the (4k — l)-dimensional manifold M. Let/» be

a prime number such that H2k_x(X) contains no/»-torsion.

By Theorem IV.2.1 of [1] (see particularly Proposition IV.3.12), we can

surger M to a manifold Mx, so that the map vx: Mx —* Xr is an isomorphism

in homology up to dimension (2k — 2), and the map

(vx)*:H2k_x(Mx;Zp)^H2k_x(X;Zp)

is a monomorphism. Consider the following commutative diagram

0^ H2k_x(Mx)®Zp^ H2k_x(Mx;Zp)

I i
0-* H2k_x (X)  ®Zp-+  H2k_x(X;Zp)

where the horizontal maps are monomorphisms by the universal coefficient

theorem, and the second vertical map is a monomorphism as explained

before. But this implies that the first vertical map is a monomorphism, and

the fact that H2k_x(X) contains no/?-torsion implies that the same is true for

H2k_x(Mx). That ends the proof.

I do not know what happens in dimension 3.

I am grateful to the editor for pointing out that the argument on p. 107 of

Browder's book [1], does not carry in the (4k - l)-dimensional case.
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