$\textrm {CR}$ submanifolds of a Kaehler manifold. I
HTML articles powered by AMS MathViewer
- by Aurel Bejancu
- Proc. Amer. Math. Soc. 69 (1978), 135-142
- DOI: https://doi.org/10.1090/S0002-9939-1978-0467630-0
- PDF | Request permission
Abstract:
The differential geometry of CR submanifolds of a Kaehler manifold is studied. Theorems about totally geodesic CR submanifolds and totally umbilical CR submanifolds are given.References
- Bang-yen Chen and Koichi Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974), 257β266. MR 346708, DOI 10.1090/S0002-9947-1974-0346708-7
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1963. MR 0152974
- Gerald D. Ludden, Masafumi Okumura, and Kentaro Yano, Totally real submanifolds of complex manifolds, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 58 (1975), no.Β 3, 346β353 (English, with Italian summary). MR 418001
- Koichi Ogiue, Differential geometry of Kaehler submanifolds, Advances in Math. 13 (1974), 73β114. MR 346719, DOI 10.1016/0001-8708(74)90066-8
- Kentaro Yano, On a structure defined by a tensor field $f$ of type $(1,\,1)$ satisfying $f^{3}+f=0$, Tensor (N.S.) 14 (1963), 99β109. MR 159296
- Kentaro Yano and Masahiro Kon, Totally real submanifolds of complex space forms. I, Tohoku Math. J. (2) 28 (1976), no.Β 2, 215β225. MR 425867, DOI 10.2748/tmj/1178240835
- Kentaro Yano and Masahiro Kon, Totally real submanifolds of complex space forms. II, K\B{o}dai Math. Sem. Rep. 27 (1976), no.Β 3, 385β399. MR 425868
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 69 (1978), 135-142
- MSC: Primary 53C55; Secondary 32C05
- DOI: https://doi.org/10.1090/S0002-9939-1978-0467630-0
- MathSciNet review: 0467630