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MAXIMAL CONNECTED EXPANSIONS OF THE REALS

J. A. GUTHRIE1, H. E. STONE AND M. L. WAGE

Abstract. The question of whether there exist nontrivial maximal con-

nected Hausdorff spaces is settled in the affirmative by showing that there is

a maximal connected topology for the reals which is finer than the

Euclidean topology.

1. Introduction. Much of the interest in the lattice of topologies on a set has

centered on those topologies which are maximal or minimal with respect to

some topological property. In this paper we show that there exist nontrivial

Hausdorff topologies maximal with respect to connectedness. This answers a

question first raised by Thomas in 1968 [15]. The existence of the question

has been noted by other authors [11], [14].

Progress on the problem has taken two directions. One approach has been

to derive the properties that a maximal connected Hausdorff space must have

[15], [16], [6], [7], [5] and to study those properties and examples of such

spaces [10], [7].

The other approach has been to try to answer certain related questions.

One such question is: Given a connected topology, how may a finer con-

nected topology be constructed? We discuss this question in the next section.

Another related question is: Does every connected Hausdorff space admit a

finer connected topology which is maximal connected? This question was

answered in the negative by Guthrie and Stone [7], who showed that no

connected Hausdorff space with a dispersion point has a finer maximal

connected topology; and by Baggs [2], who studied an example of such a

space. A third related problem was raised in 1968 by Hammer and Singletary

[8] independently of Thomas: Does there exist a maximal connected topology

finer than the usual topology on the reals? In this paper we answer this

question, and hence Thomas' more general question, in the affirmative.

Solutions were obtained independently by Wage and by Guthrie and Stone.

The constructions are different, and both will be described.

Let us fix some terminology and notation. We say that a space (X, o) is an

expansion of (A", t) if o D t. In this case we also call a an expansion of t. The

expansion of the topology t on the set A" by a collection £B of subsets of X is
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the topology with subbase iuî, and it is denoted by t(6E). In case 6E = [A}

we write r(A) in place of r({A)). Throughout R will denote the set of real

numbers, / the set of points in the closed unit interval, Q the rationals, and e

the usual Euclidean topology for R or /.

We denote the boundary and interior of a set A with respect to t by dTA

and \ntTA, respectively. The cardinality of the set A is represented by \A\, and

c is \R\.

2. Expansion of topologies. The major class of expansions which have been

known to preserve connectedness consists of those obtained by adjoining a

filter of dense sets. Results of this type have been obtained by several authors

[1], [3], [4], [6], [10], [12], [13]. Bourbaki [4] points out that these are exactly the

expansions which leave fixed the semiregular compression ts of t, the topol-

ogy generated by the regular open sets of t. The semiregular compression was

introduced by Katetov [9], who showed that it leaves invariant all continuous

functions on the space which take values in a regular space; from this the

connectedness preserving property of dense-filter expansions is immediate.

If t is expanded by an ultrafilter of r-dense sets, the resulting topology is

called submaximal by Bourbaki [4]. Note that if a is a submaximal topology

and A is any subset of the space, then dTA is a discrete set.

Let X G R and let t D e. Then a subset A of (X, t) is biperfect if for each

a G A, a G C\T(A n (- oo, a)) n ClT(A n (a, oo)). If A C X is biperfect,

then A is singular at p G A if A — {/») is r-open. An expansion a of t is a

singular expansion if every point x G X has a o-nbd base which is a filterbase

of sets T-singular at x. The expansion a of t is maximal singular (over t) if for

each x G X there is a a-nbd base at x which is an ultrafilter base of sets

T-singular at x.

3. The construction of Guthrie and Stone. The first theorem establishes a

certain compatibility of maximal singular expansions and expansions by

filters of dense sets.

Theorem 1. Let ty be an ultrafilter of e- dense sets and for each x G R, let

§x be an ultrafilter of sets e-singular at x. Let § = U ßx. Then there exists

for each x G R an ultrafilter &x of sets e(ty)-singular at x such that e(6)(ty)

= e(ty)C5), where <$ = U ßx.

Proof. For each x G R, set % = {(G n D) u {x)\G G <èx, D G ty).

Clearly, 9X is a filterbase of sets e(öD)-singular at x. Suppose V is a set such

that <$x u { V) is a filterbase of sets e(^-singular at x. Then V — (x) G

e(ty), so there exists W G e and E G ty such that V - [x) = W n E. Thus,

for b > x,

0*[(w n £)n(C7 n D)] n (x,b) = (w c\ G)n(E n Z))n (x,b)

for each (Cnfl)U {x} G %. Thus, ( W n G) n (x, b) *= 0 for each G G

%x. Similarly, (W n G) n (a, x) ^ 0 for each a < x. Thus, W u {x} is

e-singular at x and has nonempty e-singular intersection with each G G $x.
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Thus,   W u {x} E Gx  and  V E fx.  Hence,  <5X  is an ultrafilter of sets

£(öD)-singular at x.

Now § ç f, so e(ÖX^) C e(^X^) = «W^)- Conversely, in e(3)X#)

each point x has a basis of the form I7 n D n F for V E e, DE6!),

F G f,, and x E V n D n F. But F = (G n £) for some G G gx, £ G <$>,

so

cn/)nf=Kn/)n(Gn£) = KnGn(fln£)E e^K^)-

Thus, 6(60X^) Ç eiêX^) and the proof is complete.

Thus, an expansion of (R, e) which is obtained by a maximal singular

expansion followed by a submaximal expansion may be obtained as a

submaximal expansion followed by a maximal singular one.

Every topology admits maximal singular expansions, but in Example A

below we show that singular expansions of (/, e) may be disconnected. We

want to be able to construct connected ones.

Theorem 2. Suppose (I, o) is a singular expansion of (I, e) and suppose

{A, B} is a partition of (I, o), i.e., illustrates that (I, o) is disconnected. Set

C = I — (lnteA ij InteÄ). Then (C, e) is a homeomorphic image of the Cantor

set.

Proof. Clearly, lnteA and lnteB are nonempty and C is nonempty,

e-closed, and totally disconnected. LetxE C n A. Every interval J about x

must contain points of B, but Inte5 can be expressed as a disjoint union of at

most countably many open intervals Bn. Thus, since J ¡Z InteÄ, J contains an

endpoint of some Bn. But an endpoint of B„ cannot be in A. Thus, each

interval about x contains a point of B n C. Similarly, each point in B n C is

an e-cluster point of A n C. Hence (C, e) is perfect, and we are done.

This information about disconnected singular expansions allows us to

exhibit one.

Example A. Let C be the usual Cantor set constructed by removing middle

thirds from I. Let A be the union of the closures of the intervals removed at

odd numbered steps, and let B = I — A. For every x E C n A let Ux = {x}

U Int^. For x E C n B, let Ux = {x) u InteS. Let % = {Ux\x E C).

Then e(%) is a singular expansion of / which is disconnected by A and B.

Theorem 3. There exists a connected maximal singular expansion of (I, e).

Proof. By a Cantor set in /, we mean a subset of / homeomorphic to the

usual Cantor set; i.e., a closed, perfect, totally disconnected subset. Let % be

the set of all complements of Cantor sets in /. Then each J E f is a union of

countably many disjoint open intervals. Now J is determined by the count-

ably many endpoints of their intervals, so \f\ < c" = c.

Now for each J E j- consider 6(J, (0, 1}), the set of all continuous

functions from J to {0, 1). Each such function must be constant on each of

the countably many disjoint open intervals into which / can be decomposed.

For each J there are 2" = c such functions. Let % = {(J,f)\J G %, f E
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G(J, {0, 1}) and I - J G C\f~\0) n Cl/-'(1)}. Now |«| < c, and for
every J G fy, I — J is a homeomorph of the Cantor set and, hence, \I — J| =

c.

We now well-order S and index it by the least ordinal X whose cardinal is

|<S |. We write Ba for the ath pair (J,f). Thus, <S = {Ba\a < X). Similarly,

we may well-order each C = I — J and index it by the least ordinal whose

cardinal is c, also denoted by c. Then C = {xjxa G I — J, a < c).

Next we construct a mapping g: ÍB -> / by transfinite induction. For

^o = G^> f)> let g(Bo) = xo> the first element of I — J. Assume that g(Ba) has

been defined for each a < ß such that g(Ba) is the first element of I — J' not

previously chosen, where Ba = (/',/')•

Now define g(Bß) to be the first element of I — J" not previously chosen,

where Bß = (J",f"). This is possible since |{xa|a < ß}\ < c.

We now construct an expansion topology for (/, e). For every x G g($> ),

let Gx = [/-'(0) n [0, x)] u LT'(l) n (x, 1]], where x = g(B) and B =

(J,f). Let §x be an ultrafilter of sets e-singular at x such that Gx G §x. If

y G I — g(%), let § be an arbitrary ultrafilter of sets e-singular aty. Now

set S = IJ ßx, and let a = e(@). Clearly, a is a maximal singular expansion

of e.

We can now show a is connected. By Theorem 2, if there exist A, B G a

such that Ai-Qi- B, A \j B = I and ,4 n £ = 0, then / - [lnteA u

Inte5] is a Cantor set in /. Thus, we may associate with [A, B) an element

Ba = (S> f) such that Imyl - /" '(0) and \nteB = /" '(1). But xa = g(Ba) is a

point of / such that xa G J = \nttA u Inte5, and %x was chosen so that

every nbd of x intersects both A and B. Thus, no disconnection of (/, a)

exists.

Theorem 4. Let 8 be a submaximal expansion of (I, e) and let p be a

maximal singular expansion of (I, 8). Then if p is connected, p is maximal

connected.

Proof. Suppose p(A) is connected for some AGI. We will show that

A G p, that is, there is no connected proper expansion of p. If A n d^A = 0,

we are done. Thus, let x G A n 3M^. Then x G A n 9«^, and since 5 is

submaximal, there exists W G 8 such that W ndsA = {x}. Now (W n

\ntsA) G 8 and W n lntsA n (x, b) i= 0 for b > x. Otherwise, [0, x] is open

and closed in (/, ju(^)). Similarly, W n \ntsA n (a, x) = 0. Thus, (W n

\ntsA) U {x} is 5-singular at x. Now suppose V is an element of the

ultrafilter of sets 5-singular at x which forms a ju-nbd base at x. Consider

V r\[(w n\nt&A)\j (x}] -[(Fn W)c\\ntsA] u {x}

is S-singular at x, else, as above, / is uL4)-disconnected. Thus, (W n Int6/1)

U {x} G p. This contradicts x G d^A; hence, A n d^A = 0 and A G p.

Theorem 5. There exists a topology p for R such that e c u and p is

maximal connected.
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Proof. Since / contains a homeomorphic copy of R, and connected

subspaces of maximal connected spaces are maximal connected, it suffices to

show there exists a maximal connected topology for / finer than e.

By Theorem 3 there exists a connected maximal singular topology o for /

such that e c a. Now let p. be a submaximal expansion of a. By Theorem 1

the connected topology p can be obtained as a submaximal expansion

followed by a maximal singular expansion. Thus, by Theorem 4, p is maximal

connected.

Corollary 5A. Every Euclidean space R" admits a maximal connected

expansion.

Proof. Let R" be given the weak topology with respect to the collection of

all lines through the origin. By Theorem 5 each line admits a maximal

connected topology. The resulting topology for R " is maximal connected.

4. The construction of Wage.

Lemma 6. There exists a topology o, on Q, that refines the usual topology and

is maximal among all topologies having the following property:

(*)      // U is open and q E U then ( - oo, q) n U ¥= 0 ¥= (q, oo) n U.

Proof. Assume that for all a < k, oa is a topology on Q which satisfies (*)

and Oß c oa whenever ß < a < k. Let oK be the topology generated by

\J a<Koa. The lemma will follow from Zorn's lemma once it is shown that oK

satisfies (*). If q E U E oK then there is an a < tc and V E oa with q G

VE U. Since oa satisfies (*)and V c U, we have (- oo, q) n U =£ 0 ^ (q, oo)

n U, and hence oK satisfies (*).

Enumerate as <i/0: a < 2") all clopen elements U of o such that |cle({/) n

c\e(Q - U)\ = 2a. It is not difficult to prove that for each irrational x there

are 2" such clopen sets such that x E c\e(U) n cle(Q - U). Hence, the

irrationals can be inductively ordered as <xa: a < 2W> so that xa E c\e(Ua) n

cle(ö - £/„) for all a < 2".

For each a < 2" choose a set of rationals, La, that lies to the left of xa, and

a set of rationals, Ra, that lies to the right of xa such that

(a) La, Ra E o,

(b) xa E clE(LJ n c\t(Ra), and

(c) either La c Ua and Ra c Q - Ua, or La c Q - Ua and Ra C £/„.

It is easy to find such La and Ra since if we cannot let La = (- oo, xa) n Ua

and Äa = (xa, ce) n Q - Ua, then just set La = (- oo, xa) n 0 - tT„ and

*« = K. °°) n £/„.
Now for each a < 2W, let £a be a maximal subset of o such that La n (xa

- \/n, xa) E £a for each n E w and /l n B ^ 0 for each i,fi£ £„. Simi-

larly define i)la in terms of Äa.

r/ît? topology p. We can now define a basis for a maximal connected T2

topology on R. The basis contains all members of a plus all sets of the form
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{xa} u L \J R where a < 2", L G ta and R G %. Call the topology gener-

ated by this basis p. This new topology is Hausdorff since it is an expansion

of the usual topology on the line.

Theorem 7. p is connected.

Proof. Let U be a nonempty clopen element of p. We will show that p is

connected by proving that U contains the rationals, and hence all of R (since

Q is p-dense in R). Suppose that U does not contain Q. If it happens that

|cle(ô n U) n cle(0 - U)\ = 2U then Q n U = Ua for some a < 2U. But

by definition the p-neighborhoods of xa intersect both Ua and Q - Uaso that

U cannot be p-clopen. Hence, we can assume that |cle(<2 ni/)fi dt(Q ~

U)\ < 2". The set cle(Q n U) n c\E(Q - U) is a closed element of the usual

topology on R that has cardinality less than 2" and hence has an e-isolated

point, x. (Note that cle(<2 n U) n cle(f2 - U) ¥= 0 since Q <Z U and U is

p-open and nonempty.) Let (a, b) be an interval in R that witnesses the

isolation of x. Then (since the interval (a, x) is e-connected and contains no

points of cle(£? ni/)n cle(ô _ U)), (a, x) must be contained in either U or

R — U. Without loss of generality, assume (a, x) c U. Similarly, either

(x, b) G U or (x, b) G R - U. Since x G c\e(Q - i/)and (a, x) c U, it must

be that (x, b) c Q — U. However, x is in the p closure of both (a,x) and

(x, b). Hence U is not clopen and it follows that p is connected.

Theorem 8. p is maximal connected.

Proof. To see that p is a maximal connected topology assume that p is a

topology on R that strictly contains p. If p n $ (Q) ¥= o then, by the

maximality of a, there is a q G Q and A Gp such that either (— oo, q) n A =

0 or (q, oo) n A = 0. This implies that either (— oo, q) or ( —oo, q] is a

clopen element of p and that p is not connected. Thus we can assume that

p n ^(Q) = o. Since p is strictly larger than p, there is an A G p and

irrational xa such that xa G A but A contains no p-neighborhood of xa. By

intersecting A with a suitable p-neighborhood of xa we can assume that

A G Q U {*«}• Then A C\ Q G a and, since yl is not a p-neighborhood of xa,

there is a U G ta u 9la such that Í7 n ^ =0. This implies that either

(-oo, xa) or (-oo, xa] is a clopen element of p. Thus p is not connected and

p is a maximal connected topology.

5. Concluding remarks. Although the two constructions (actually existence

theorems) given here have striking similarities, they are in a sense comple-

mentary. The construction of Wage is the more direct, that of Guthrie and

Stone the more general. Note, for example, that the Wage example has

countable dispersion character (minimum cardinality of an open set). The

dispersion character in the Guthrie-Stone example may also be chosen to be

countable or, by choosing the ultrafilter of dense sets finer than the filter of

sets which are complements of sets of cardinality less than c, the dispersion

character may be made to remain c.
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The following questions remain open:

Question 1. Does there exist a regular Tx maximal connected topology?

Question 2. Does there exist a countable maximal connected Hausdorff

topology?

Question 3. How may maximal connected Hausdorff topologies be charac-

terized?

It has come to the attention of the authors that P. Simon of Prague has

announced a solution to the problem solved in this paper, but we have not

been able to obtain a copy of his construction.

References

1. D. R. Anderson, On connected irresolvable Hausdorff spaces, Proc. Amer. Math. Soc. 16

(1965), 463^66. MR 31 #2700.
2. I. Baggs, A connected Hausdorff space which is not contained in a maximal connected space,

Pacific J. Math. 51 (1974), 11-18.

3. C. J. R. Borges, On extensions of topologies, Canad. J. Math. 19 (1967), 474-487. MR 35
#3621.

4. N. Bourbaki, Elements of mathematics. General topology, Part 1, Addison-Wesley, Reading,

Mass., 1966. MR 34 # 5044a.

5. L. Friedler, Open, connected functions, Canad. Math. Bull. 16 (1973), 57-60.

6. J. A. Guthrie, D. F. Reynolds and H. E. Stone, Connected expansions of topologies, Bull.

Austral. Math. Soc. 9 (1973), 259-265. MR 48 #7201.

7. J. A. Guthrie and H. E. Stone, Spaces whose connected expansions preserve connected

subsets,  Fund. Math. 80 (1973), 91-100. MR 48 #9653.

8. P. C. Hammer and W. E. Singletary, Connectedness-equivalent spaces on the line, Rend.

Circ. Mat. Palermo 17 (1968), 245-355. MR 43 #8054.

9. M. Katetov, On topological spaces containing no disjoint dense sets, Mat. Sb. 21 (1947), 3-12.

MR 9, 98.
10. M. R. Kirch, A class of spaces in which contact sets are finite, Amer. Math. Montly 76

(1969), 42. MR 38 #3816.
11. R. E. Larson, Maximal connected topologies: a survey of the problem, Notices Amer. Math.

Soc. 23 (1976), A-179.
12. N. Levine, Simple extensions of topologies, Amer. Math. Monthly 71 (1964), 22-25. MR 29

#580.

13. D. F. Reynolds, Preservation of connectedness under extensions of topologies, Kyungpook

Math. J. 13 (1973), 217-219.
14. A. K. Steiner, Oti the lattice of topologies, General Topology and Its Relation to Modern

Analysis and Algebra III, Academia, Prague, 1972, pp. 411-415.

15. J. P. Thomas, Maximal connected topologies, J. Austral. Math. Soc. 8 (1968), 700-705. MR
38 #5177.

16. _, Maximal connected Hausdorff spaces, Pacific J. Math. 57 (1975), 581-583.

Department of Mathematics, University of Texas at El Paso, El Paso, Texas 79968

Department of Mathematics, University of Southwestern Louisiana, Lafayette, Loui-

siana 70504

Institute for Medicine and Mathematics, Ohio University, Athens, Ohio 45701

Current address (M. L. Wage): Department of Mathematics, Yale University, New Haven,

Connecticut 06520


