Maximal connected expansions of the reals
HTML articles powered by AMS MathViewer
- by J. A. Guthrie, H. E. Stone and M. L. Wage
- Proc. Amer. Math. Soc. 69 (1978), 159-165
- DOI: https://doi.org/10.1090/S0002-9939-1978-0467646-4
- PDF | Request permission
Abstract:
The question of whether there exist nontrivial maximal connected Hausdorff spaces is settled in the affirmative by showing that there is a maximal connected topology for the reals which is finer than the Euclidean topology.References
- Douglas R. Anderson, On connected irresolvable Hausdorff spaces, Proc. Amer. Math. Soc. 16 (1965), 463–466. MR 178443, DOI 10.1090/S0002-9939-1965-0178443-2
- Ivan Baggs, A connected Hausdorff space which is not contained in a maximal connected space, Pacific J. Math. 51 (1974), 11–18. MR 365477
- Carlos J. R. Borges, On extensions of topologies, Canadian J. Math. 19 (1967), 474–487. MR 212755, DOI 10.4153/CJM-1967-040-9
- Nicolas Bourbaki, Elements of mathematics. General topology. Part 1, Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966. MR 0205210
- Louis Friedler, Open, connected functions, Canad. Math. Bull. 16 (1973), 57–60. MR 341382, DOI 10.4153/CMB-1973-012-9
- J. A. Guthrie, D. F. Reynolds, and H. E. Stone, Connected expansions of topologies, Bull. Austral. Math. Soc. 9 (1973), 259–265. MR 328859, DOI 10.1017/S000497270004315X
- J. A. Guthrie and H. E. Stone, Spaces whose connected expansions preserve connected subsets, Fund. Math. 80 (1973), no. 1, 91–100. MR 331319, DOI 10.4064/fm-80-1-91-100
- Preston C. Hammer and W. E. Singletary, Connectedness-equivalent spaces on the line, Rend. Circ. Mat. Palermo (2) 17 (1968), 343–355. MR 282342, DOI 10.1007/BF02909632
- M. Katětov, On topological spaces containing no disjoint dense sets, Rec. Math. [Mat. Sbornik] N.S. 21(63) (1947), 3–12 (Russian, with English summary). MR 0021679
- Murray R. Kirch, A class of spaces in which compact sets are finite, Amer. Math. Monthly 76 (1969), 42. MR 235507, DOI 10.2307/2316787 R. E. Larson, Maximal connected topologies: a survey of the problem, Notices Amer. Math. Soc. 23 (1976), A-179.
- Norman Levine, Simple extensions of topologies, Amer. Math. Monthly 71 (1964), 22–25. MR 163277, DOI 10.2307/2311297
- Donald F. Reynolds, Preservation of connectedness under extensions of topologies, Kyungpook Math. J. 13 (1973), 217–219. MR 339069
- A. K. Steiner, On the lattice of topologies, General topology and its relations to modern analysis and algebra, III (Proc. Third Prague Topological Sympos., 1971) Academia, Prague, 1972, pp. 411–415. MR 0353231
- J. Pelham Thomas, Maximal connected topologies, J. Austral. Math. Soc. 8 (1968), 700–705. MR 0236884
- J. Pelham Thomas, Maximal connected Hausdorff spaces, Pacific J. Math. 57 (1975), no. 2, 581–583. MR 410660
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 69 (1978), 159-165
- MSC: Primary 54A10
- DOI: https://doi.org/10.1090/S0002-9939-1978-0467646-4
- MathSciNet review: 0467646