An analogue of some inequalities of P. Turán concerning algebraic polynomials having all zeros inside $[-1,+{}1]$. II
HTML articles powered by AMS MathViewer
- by A. K. Varma
- Proc. Amer. Math. Soc. 69 (1978), 25-33
- DOI: https://doi.org/10.1090/S0002-9939-1978-0473124-9
- PDF | Request permission
Abstract:
Let ${P_n}(x)$ be an algebraic polynomial of degree $\leqslant n$ having all zeros inside $[ - 1, + 1]$; then we have \[ \int _{ - 1}^1 {P’}_n^2 (x)dx > \left ( {\frac {n}{2} + \frac {3}{4} + \frac {3}{{4n}}} \right )\int _{ - 1}^1 {P_n^2(x)dx.} \] This bound is much sharper than found in [2]. Moreover, if ${P_n}(1) = {P_n}( - 1) = 0$, then under the above conditions we have \[ \int _{ - 1}^1 {P’}_n^2 (x)dx \geqslant \left ( {\frac {n}{2} + \frac {3}{4} + \frac {3}{{4(n - 1)}}} \right )\int _{ - 1}^1 {P_n^2(x)dx,} \] equality for ${P_n}(x) = {(1 - {x^2})^m},n = 2m$.References
- P. Turan, Über die Ableitung von Polynomen, Compositio Math. 7 (1939), 89–95 (German). MR 228
- A. K. Varma, An analogue of some inequalities of P. Turán concerning algebraic polynomials having all zeros inside $[-1,+1]$, Proc. Amer. Math. Soc. 55 (1976), no. 2, 305–309. MR 396878, DOI 10.1090/S0002-9939-1976-0396878-7
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 69 (1978), 25-33
- MSC: Primary 26A82; Secondary 26A75
- DOI: https://doi.org/10.1090/S0002-9939-1978-0473124-9
- MathSciNet review: 0473124