Nice sets of multi-indices
HTML articles powered by AMS MathViewer
- by W. R. Madych and P. Szeptycki
- Proc. Amer. Math. Soc. 69 (1978), 70-72
- DOI: https://doi.org/10.1090/S0002-9939-1978-0481857-3
- PDF | Request permission
Abstract:
Finite sets, A, of n-tuples for which ${({\Sigma _{\alpha \in A}}(\prod _{j = 1}^n|{x_j}{|^{{\alpha _j}}}))^{ - p}},p > 0$, is integrable over ${R^n}$ are given a simple characterization. Applications to certain Fourier multiplier theorems are mentioned.References
- A.-P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution, Advances in Math. 16 (1975), 1–64. MR 417687, DOI 10.1016/0001-8708(75)90099-7
- Lars Hörmander, Estimates for translation invariant operators in $L^{p}$ spaces, Acta Math. 104 (1960), 93–140. MR 121655, DOI 10.1007/BF02547187 V. M. Kagan, On the boundedness of pseudo-differential operators in ${L^p}$, Izv. Vysš. Učebn. Zaved. Matematika 73 (1968), 35-44. (Russian)
- Walter Littman, Multipliers in $L^{p}$ and interpolation, Bull. Amer. Math. Soc. 71 (1965), 764–766. MR 179544, DOI 10.1090/S0002-9904-1965-11382-9
- W. R. Madych, Iterated Littlewood-Paley functions and a multiplier theorem, Proc. Amer. Math. Soc. 45 (1974), 325–331. MR 355475, DOI 10.1090/S0002-9939-1974-0355475-8
- N. M. Rivière, Singular integrals and multiplier operators, Ark. Mat. 9 (1971), 243–278. MR 440268, DOI 10.1007/BF02383650 P. Szeptycki, A remark on Miklin’s theorem about multipliers of Fourier transforms, Notices Amer. Math. Soc. 11 (1964), 558.
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 69 (1978), 70-72
- MSC: Primary 42A16
- DOI: https://doi.org/10.1090/S0002-9939-1978-0481857-3
- MathSciNet review: 0481857