Multiplication rules for polynomials
HTML articles powered by AMS MathViewer
- by Melvyn B. Nathanson
- Proc. Amer. Math. Soc. 69 (1978), 210-212
- DOI: https://doi.org/10.1090/S0002-9939-1978-0466087-3
- PDF | Request permission
Abstract:
It is proved that the polynomial solutions of the functional equation \[ F(z)F( {z + 1/\sqrt a } ) = F( {\sqrt a {z^2} + (b/\sqrt a + 1)z + c/\sqrt a } )\] are precisely ${(a{z^2} + bz + c)^n}$ if ${b^2} - 4ac \ne 0$ and ${(\sqrt a z + b/2\sqrt a )^n}$ if ${b^2} - 4ac = 0$.References
- B. J. Birch, personal communication.
- S. D. Cohen, P. Erdős, and M. B. Nathanson, Prime polynomial sequences, J. London Math. Soc. (2) 14 (1976), no. 3, 559–562. MR 427255, DOI 10.1112/jlms/s2-14.3.559
- Harold N. Shapiro, Powers of $x^2 + 1$, Math. Mag. 50 (1977), no. 4, 208–209. MR 1572226
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 69 (1978), 210-212
- MSC: Primary 12D99
- DOI: https://doi.org/10.1090/S0002-9939-1978-0466087-3
- MathSciNet review: 0466087