One relator groups having a finitely presented normal subgroup
HTML articles powered by AMS MathViewer
- by A. Karrass and D. Solitar
- Proc. Amer. Math. Soc. 69 (1978), 219-222
- DOI: https://doi.org/10.1090/S0002-9939-1978-0466323-3
- PDF | Request permission
Abstract:
A classification is given for one-relator groups having a finitely presented normal subgroup of infinite index.References
- Gilbert Baumslag, Finitely generated cyclic extensions of free groups are residually finite, Bull. Austral. Math. Soc. 5 (1971), 87–94. MR 311776, DOI 10.1017/S0004972700046906
- Robert Bieri, Homological dimension of discrete groups, Queen Mary College Mathematics Notes, Queen Mary College, Mathematics Department, London, 1976. MR 0466344
- Ian M. Chiswell, Euler characteristics of groups, Math. Z. 147 (1976), no. 1, 1–11. MR 396785, DOI 10.1007/BF01214269
- J. Fischer, A. Karrass, and D. Solitar, On one-relator groups having elements of finite order, Proc. Amer. Math. Soc. 33 (1972), 297–301. MR 311780, DOI 10.1090/S0002-9939-1972-0311780-0
- A. Karrass, A. Pietrowski, and D. Solitar, An improved subgroup theorem for HNN groups with some applications, Canadian J. Math. 26 (1974), 214–224. MR 432766, DOI 10.4153/CJM-1974-021-1
- A. Karrass and D. Solitar, Subgroups of $\textrm {HNN}$ groups and groups with one defining relation, Canadian J. Math. 23 (1971), 627–643. MR 301102, DOI 10.4153/CJM-1971-070-x
- A. Karrass and D. Solitar, The subgroups of a free product of two groups with an amalgamated subgroup, Trans. Amer. Math. Soc. 150 (1970), 227–255. MR 260879, DOI 10.1090/S0002-9947-1970-0260879-9
- John Stallings, Groups of cohomological dimension one, Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 124–128. MR 0255689
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 69 (1978), 219-222
- MSC: Primary 20F05
- DOI: https://doi.org/10.1090/S0002-9939-1978-0466323-3
- MathSciNet review: 0466323