DECOMPOSITION OF APPROXIMATE DERIVATIVES

RICHARD J. O’MALLEY

Abstract. It is shown that if \(f: [0, 1] \to \mathbb{R} \) has a finite approximate derivative \(f_{ap} \) everywhere in \([0, 1]\), then there is a sequence of perfect sets \(H_n \), whose union is \([0, 1]\), and a sequence of differentiable functions, \(h_n \), such that \(h_n = f \) over \(H_n \) and \(h'_n = f_{ap} \) over \(H_n \). This result follows from a new, more general theorem relating approximate differentiability and differentiability. Applications of both theorems are given.

In this paper we illustrate a new sense in which an approximate derivative is a derivative. This approach can be used to both clarify known properties of these derivatives and also establish additional properties. Basically, we prove that an approximate derivative can be decomposed, in a way which will be made precise, into a sequence of derivatives. This result will be obtained from the following new theorem relating the concepts of differentiability and approximate differentiability.

Theorem 1. Let \(Q \) be a measurable set and \(E \) a closed subset of the points of density of \(Q \). Suppose \(f: Q \to \mathbb{R} \) is a measurable function possessing a finite approximate derivative at each point of \(E \). Then \(E \) can be expressed as the countable union of closed sets \(E_n \) such that for each \(n \) and each \(x \) in \(E_n \),

\[
E_n = \lim_{y \to x} \frac{f(y) - f(x)}{y - x} = f'_{ap}(x).
\]

Here the notation \(E_n \to x \) means that we approach \(x \) only through the set \(E_n \setminus \{x\} \). At an isolated point of \(E_n \) the conclusion is considered to hold vacuously. It will be shown later that the sets \(E_n \) can be chosen to be perfect sets.

Before the proof we state a lemma. It is a modification of lemmas which can be found in [4] and [5].

Lemma. Let \(Q \) and \(E \) be as stated in Theorem 1. Suppose \(f \) is approximately continuous at every point of \(E \). Let \(n \) be a fixed integer. Define

\[
A_n(x) = \{ y \in Q: |f(y) - f(x)| < n|y - x| \}
\]

and
\(E_n = \{ x \in E : m(A_n \cap I) \geq \frac{3}{4} m(I) \text{ for all intervals I containing } x \text{ with length of } I < 1/n \}. \)

(Here \(m \) denotes Lebesgue measure.) Then

(a) \(E_n \) is a closed set, and

(b) if \(x \) and \(y \) belong to \(E_n \) and \(|x - y| < 1/n \), then \(|f(x) - f(y)| < n|x - y| \).

Proof. The proof of (b) is obvious. The proof of (a) is rather lengthy and requires proving first that (b) holds at every two limit points of \(E_n \). Since the proof can be arrived at by modifying appropriately the proofs in [4] or [5] it will not be given here. We proceed instead with the proof of Theorem 1.

Proof of Theorem 1. For each \(n \) we apply the above Lemma to get a sequence of closed sets \(E_n \). These \(E_n \) form the desired decomposition of \(E \). To see this let \(x \) belong to \(E \). There is an \(N_1(x) \) such that for \(n > N_1 \), \(A_n(x) \) has density 1 at \(x \). Then there is an \(N_2 > N_1 \) such that for \(n > N_2 \), \(x \) belongs to \(E_n \). Thus \(\bigcup_{1 \leq n \leq \infty} E_n = E \). It remains only to show that \(f \) is differentiable relative to \(E_n \) and differentiates to \(f'_{ap} \). This is more involved.

Let \(n \) be fixed and \(x \) belong to \(E_n \). Let \(x_k \) be a sequence of points of \(E_n \) converging to \(x \). It will not hurt the generality of the argument to assume that \(x = 0 \) and \(f(0) = 0 \). Since \(f \) is approximately differentiable at 0 there is a measurable set \(V \subset Q \) having density 1 at 0 for which

\[V = \lim_{x \to 0} \frac{f(x)}{x} = f'_{ap}(0). \]

By use of the Lusin-Menchoff Theorem [2], we may assume that \(V \) is a perfect set. There is an \(n^{-1} > \delta_1 > 0 \) such that for all \(0 < x < \delta_1 \), \(m(V \cap [0, x]) > x2^{-1} \). We assume that \(x_k < \delta_1 \) for all \(k \) and define

\[L_k = \{ z : 0 < z < x_k \text{ and } m(V \cap [z, x_k]) > 2^{-1}(x_k - z) \}. \]

The set \(L_k \) is not empty since 0 belongs to \(L_k \). Let \(l_k \) be the least upper bound of \(L_k \). If \(l_k = x_k \), select a point \(z_k \) belonging to \(L_k \) with \(x_k > z_k > (1 - 1/k)x_k \). If \(l_k < x_k \) let \(z_k = l_k \). Then in either case

\[m(V \cap [z_k, x_k]) > \frac{1}{2}(x_k - z_k). \]

For each \(k \) \(x_k \) belongs to \(E_n \), and since the length of \([z_k, x_k] \) is less than \(n^{-1} \) we have

\[m(A_n(x_k) \cap [z_k, x_k]) > \frac{3}{4}(x_k - z_k). \]

Hence

\[m(V \cap A_n(x_k) \cap [z_k, x_k]) > 0. \]

We select another point \(y_k \) from this intersection, strictly between \(z_k \) and \(x_k \). For the sequence \(y_k \) we have

(i) \(\lim_{k \to +\infty} f(y_k)/y_k = f'_{ap}(0) \), and

(ii) \(|f(y_k) - f(x_k)| \leq n(x_k - y_k) \).
Now
\[\frac{f(x_k)}{x_k} = \frac{f(x_k) - f(y_k)}{x_k - y_k} \left[1 - \frac{y_k}{x_k} \right] + \frac{f(y_k)}{y_k} \frac{y_k}{x_k}. \]
Thus from (i) and (ii) above if we show that \(\lim_{k \to +\infty} y_k/x_k = 1 \), then
\[\lim_{k \to \infty} f(x_k)/x_k = f'_\text{ap}(0). \]
To get this final part we make a few preliminary observations. First we note that \(z_k < y_k < x_k \), so it suffices to prove that \(z_k/x_k \) approaches 1. Next, the sequence \(z_k \) was chosen in two different ways.
For those \(k \) such that \(l_k = x_k \), we have \(z_k > (1 - 1/k)x_k \). Therefore, we need only consider any subsequence of \(k \)'s for which \(l_k < x_k \). In this case \(z_k = l_k \), and we will be finished if we show that \(\lim_{k \to +\infty} l_k/x_k = 1 \).
Let \(0 < \varepsilon < \frac{1}{4} \) be fixed. There is a \(K \) such that for \(k > K \), \(m(V \cap [0, x_k]) > (1 - \varepsilon)x_k \). For such a \(k \) consider the interval \([x_k - 3\varepsilon x_k, x_k]\). In this interval
\[m(V \cap [x_k - 3\varepsilon x_k, x_k]) > x_k - \varepsilon x_k - [m(V \cap [0, x_k - 3\varepsilon x_k])] \]
\[> x_k - \varepsilon x_k - [x_k - 3\varepsilon x_k] = 2\varepsilon x_k = \frac{2}{3} m([x_k - 3\varepsilon x_k, x_k]). \]
Hence,
\[l_k \geq x_k - 3\varepsilon x_k, \]
which completes the proof.
We note that Theorem 1 could be applied to get a version of the known result by Whitney [6]. However, we proceed to consider functions which are approximately differentiable everywhere in \([0, 1]\).

Theorem 2. If \(f: [0, 1] \to \mathbb{R} \) has a finite approximate derivative, \(f'_\text{ap} \), at every point of \([0, 1]\), then there is a sequence of perfect sets \(H_n \) and a sequence of differentiable functions \(h_n \) such that
(i) \(h_n(x) = f(x) \) over \(H_n \),
(ii) \(h'_n(x) = f'_\text{ap}(x) \) over \(H_n \), and
(iii) \(\bigcup_{1 \leq n < \infty} H_n = [0, 1] \).
The sequence \((h_n, H_n) \) is called a decomposition of \(f \). The corresponding sequence \((h'_n, H_n) \) is the before-mentioned decomposition of the approximate derivative \(f'_\text{ap} \).

Proof. We first obtain \(H_n \). Let \(E_n \) be the sets defined in Theorem 1. We have shown that \(f \) differentiates to \(f'_\text{ap} \), relative to \(E_n \). However, \(E_n \) may have isolated points. We can express \(E_n \) as the union of a perfect set \(P_n \) and a countable set \(C_n \). Let \(C \) be the union, over \(n \), of these \(C_n \). Arrange the elements of \(C \) into a sequence which we also label \(x_n \). For each fixed \(x_n \) we can find a perfect set \(V_n \), having density 1 at \(x_n \), such that
\[V_n - \lim_{y \to x_n} \frac{f(y) - f(x)}{y - x} = f'_\text{ap}(x_n). \]
We choose a disjoint sequence of intervals \(I_k = [a_k, b_k] \) having the properties that
(1) the point \(x_n \) is not in any \(I_k \),
(2) \(\lim_{k \to +\infty} a_k = x = \lim_{k \to +\infty} b_k \), and
(3) \(m(I_k \cap V_n) > 0 \) for each \(k \).

For each \(k \) it is possible to find an integer \(N(k) \) such that \(m(\mathbb{E}^{N(k)} \cap I_k \cap V_n) > 0 \). For such an \(N(k) \) we select a perfect set \(W_k \) from the intersection. Then we set \(Q_n \) equal to the union, over \(k \), of \(W_k \) and \(\{ x_n \} \). Then \(Q_n \) is perfect. Finally, we set \(H_n = P_n \cup Q_n \). It is clear that the \(H_n \) are perfect sets and, for each \(x \) in \(H_n \),

\[
H_n - \lim_{y \to x} \frac{f(y) - f(x)}{y - x} = f'_\text{ap}(x).
\]

We note that the above argument could be applied in Theorem 1 to make \(E_n \) perfect. At this point we are able to apply the theorem of Petruska and Laczkovich [3]. This theorem guarantees that for each \(N \) it is possible to obtain a differentiable function \(h_n \) such that \(h_n = f \) over \(H_n \). This completes the proof.

It is obvious that the existence of the sets \(H_n \) presents a situation where the Baire category theorem can be usefully employed. We do so. As applications we present two corollaries. The first gives transparent proofs of two known theorems [1].

Corollary 1. Let \(f: [0, 1] \to \mathbb{R} \) have a finite approximate derivative \(f'_\text{ap} \) everywhere in \([0, 1]\). Then
(a) there is a dense open set \(U \) such that \(f \) is differentiable on each component of \(U \), and
(b) the function \(f'_\text{ap} \) is Baire 1.

Proof. Let \((h_n, H_n)\) and \((h'_n, H'_n)\) be decompositions of \(f \) and \(f'_\text{ap} \).
(a) Let \(H^o_n \) be the interior of \(H_n \). Let \(U \) be the union of the \(H^o_n \). By the Baire category theorem, \(U \) is a dense open subset of \([0, 1]\). Clearly, since \(f = h_n \) over \(H^o_n \), \(f \) is differentiable over every component of \(U \).
(b) Let \(P \) be a perfect set. Let \(P_n = H_n \cap P \). Again an application of the Baire category theorem yields that there is an \(N \) and \((a, b)\) such that \(\emptyset \neq (a, b) \cap P \subseteq P_N \). Then \(f'_\text{ap} = h'_N \) over \(P_N \). Since \(h'_N \) is Baire 1 it has a point of relative continuity in \(P_N \), and, hence, \(f'_\text{ap} \) is Baire 1 on \([0, 1]\).

Basic to the concept of approximate differentiability is the idea that at a point \(x_0 \) we may disregard the behavior of a function over certain "small" sets. Therefore it becomes natural to expect that knowledge of the behavior of \(f \) on a small set, such as nowhere dense sets of measure zero, would not permit the prediction of the values of \(f'_\text{ap} \) over this set. However, the next corollary shows that this is not quite true.

Corollary 2. Let \(f: [0, 1] \to \mathbb{R} \) and \(g: [0, 1] \to \mathbb{R} \) be two measurable functions. Suppose \(P \) is any perfect set such that \(f(x) = g(x) \) over \(P \). Suppose, in addition, that at every point of \(P \) \(f \) is approximately differentiable and \(g \) is differentiable. Then there is an open interval \((a, b)\) with \((a, b) \cap P \neq \emptyset \) such that \(f'_\text{ap} = g' \) at every point of \((a, b) \cap P \).
Proof. Let \(h(x) = f(x) - g(x) \) for all \(x \) in \([0, 1]\). Then over \(P \) \(h = 0 \) and \(h_{ap}' = f_{ap}' - g' \). By Theorem 1 there is a sequence of closed sets \(P_n \) such that \(h \) differentiates to \(h_{ap}' \) over \(P \) and \(\bigcup_{1 \leq n < \infty} P_n = P \). Once again the Baire category theorem yields an \((a, b)\) and \(N \) such that \(\emptyset \neq (a, b) \cap P \subset P_N \). Now \(P \) is perfect, and for every \(x \) in \((a, b) \cap P \) we have

\[
P - \lim_{y \to x} \frac{h(y) - h(x)}{y - x} = h_{ap}'(x) = 0 = f_{ap}'(x) - g'(x).
\]

Acknowledgments. The author appreciates valuable discussions he had with Professor C. E. Weil which led to the development of this paper.

References

Department of Mathematics, University of Wisconsin, Milwaukee, Wisconsin 53201