A SHORT PROOF OF A GREENE THEOREM

CHUNG-LIE WANG

Abstract. A short and simple proof of an inequality of the Gronwall type is given for a class of integral systems based upon the generalized Gronwall lemma of Sansone-Conti.

Recently David E. Greene [1] used a technically involved iteration in proving the following

Theorem [Greene]. Let K_1, K_2 and μ be nonnegative constants and let f, g and h_i be continuous nonnegative functions for all $t > 0$ with h_i bounded such that

$$f(t) < K_1 + \int_0^t h_1(s)f(s)\,ds + \int_0^t e^{\mu h_2(s)}g(s)\,ds,$$

$$g(t) < K_2 + \int_0^t e^{-\mu h_3(s)}f(s)\,ds + \int_0^t h_4(s)g(s)\,ds$$

for all $t > 0$. Then there exist constants c and M_i such that

$$f(t) < M_1 e^{ct}, \quad g(t) < M_2 e^{ct}$$

for all $t > 0$.

In this note, is presented a short and simple proof of this theorem based upon the generalized Gronwall lemma of Sansone-Conti which is cited from [2] in a restricted form as follows

(Generalized) Gronwall Lemma. For all $t > 0$, let three functions λ, ϕ, u be given such that λ is summable and nonnegative, ϕ is absolutely continuous, and u is continuous. If $u(t) < \phi(t) + \int_0^t \lambda(s)u(s)\,ds$, then

$$u(t) < \int_0^t \phi'(s)\exp\left(\int_s^t \lambda(r)\,dr\right)\,ds + \phi(0)\exp\left(\int_0^t \lambda(r)\,dr\right).$$

Proof of the Theorem. Let P be an upper bound for h_i (the assumption $\mu > 0$ is not necessarily required here), then

$$f(t) < K_1 + P \int_0^t f(s)\,ds + P \int_0^t e^{\mu s}g(s)\,ds,$$ \hspace{1cm} (1)

$$g(t) < K_2 + P \int_0^t e^{-\mu s}f(s)\,ds + P \int_0^t g(s)\,ds.$$ \hspace{1cm} (2)

Received by the editors July 5, 1977.

AMS (MOS) subject classifications (1970). Primary 34C10; Secondary 45F05.

The author was supported (in part) by the N.R.C. of Canada (Grant No. A3116).

© American Mathematical Society 1978
Multiplying (1) by \(e^{-\mu t} \) and then adding to (2),

\[
e^{-\mu t}f(t) + g(t)
\]

\[
\leq K_1 e^{-\mu t} + K_2 + \int_0^t P[e^{\mu(s-t)} + 1] [e^{-\mu t}f(s) + g(s)] \, ds
\]

\[
\leq K_1 e^{-\mu t} + K_2 + \int_0^t 2P[e^{-\mu t}f(s) + g(s)] \, ds.
\]

Applying the lemma to (3)

\[
e^{-\mu t}f(t) + g(t)
\]

\[
\leq \int_0^t (-K_1 \mu e^{-\mu s}) \exp \left(\int_s^t 2Pdr \right) ds + (K_1 + K_2) \exp \left(\int_0^t 2Pds \right)
\]

\[
= \frac{K_1 \mu}{2P + \mu} e^{-\mu t} + \frac{2P(K_1 + K_2)}{2P + \mu} e^{2Pt}.
\]

The conclusion of the theorem is now clear.

References

Department of Mathematics, University of Regina, Regina, Saskatchewan, Canada S4S 0A2