EQUIVALENCES GENERATED BY FAMILIES OF BOREL SETS

JOHN P. BURGESS

Abstract. The equivalence relation on the reals generated by a family of \(\mathcal{B} \) Borel sets has either less than \(\aleph_0 \) or else exactly \(2^{\aleph_0} \) equivalence classes.

As is usual in modern set theory, we identify an ordinal with the set of its predecessors, and a cardinal with the first ordinal of that cardinality. Thus \(2 = \{0, 1\} \), \(\omega = \{0, 1, 2, \ldots\} \); while \(\aleph_0 = \omega \), \(\aleph_1 \) is the first uncountable ordinal \(\omega_1 \), etc. If \(\alpha, \beta \) are ordinals,

\[
\beta \alpha = \{ f : f \text{ is a function} \& \text{dom } f = \beta \& \text{range } f \subseteq \alpha \};
\]

while

\[
\beta \alpha = \bigcup_{\gamma < \beta} \gamma \alpha.
\]

If \(f \in \beta \alpha \) and \(\gamma < \beta \), then \(f|\gamma \) is the restriction of \(f \) to \(\gamma \); while if \(\delta < \alpha \), \(f \circ \delta \)

is the element \(g \) of \((\beta + 1)\alpha \) with \(g|\beta = f \) and \(g(\beta) = \delta \).

Let \(X \) be an uncountable Polish space (separable topological space admitting a complete metric), e.g. the reals. A family \(\mathcal{S} \) of subsets of \(X \) generates an equivalence relation \(E(\mathcal{S}) \) on \(X \) defined by

\[
x E(\mathcal{S}) y \iff \forall S \in \mathcal{S} (x \in S \iff y \in S).
\]

Let \(k \) be an infinite cardinal. A subset \(S \subseteq X \) is called \(k \)-Souslin if \(S \) can be represented in the form

\[
S = \bigcup_{f \in \kappa} \bigcap_{n < \omega} C_y^n,
\]

where for each \(s \in \kappa \), \(C_s \subseteq X \) is closed. \(S \) is co-\(k \)-Souslin if \(X - S \) is \(k \)-Souslin, and bi-\(k \)-Souslin if both \(k \)-Souslin and co-\(k \)-Souslin. Thus the \(\omega \)-Souslin sets are just the analytic \((\Sigma_1^1) \) sets; the co-\(\omega \)-Souslin sets are the \(\text{CA}(\Pi^0_1) \) sets; and by a classical theorem of Souslin (see [3]) the bi-\(\omega \)-Souslin sets are the Borel sets.

An equivalence relation \(E \) on \(X \) is said to have perfectly many classes if there is a perfect (closed, dense-in-itself) \(P \subseteq X \) such that no two (distinct) elements of \(P \) are \(E \)-equivalent. Since any perfect subset of \(X \) has cardinality \(2^{\aleph_0} \), this implies \(E \) has \(2^{\aleph_0} \) classes. Note that if \(S, T \) are families of subsets of
X with $\mathcal{T} \subseteq \mathcal{S}$, then $E(\mathcal{T}) \subseteq E(\mathcal{S})$ (as subsets of X^2), and, hence, the number of $E(\mathcal{S})$ classes can be no less than the number of $E(\mathcal{T})$ classes, and the former has perfectly many classes if the latter does.

Theorem. Let X be an uncountable Polish space, κ an infinite cardinal, \mathcal{S} a family of κ many bi-κ-Souslin subsets of X. Then if the equivalence relation $E(\mathcal{S})$ generated by \mathcal{S} has more than κ equivalence classes, there exists a countable $\mathcal{T} \subseteq \mathcal{S}$ such that $E(\mathcal{T})$ has perfectly many classes.

Proof. Fix a complete metric ρ on X compatible with its topology. Enumerate $\mathcal{S} = \{S^\alpha : \alpha < \kappa\}$. For each $\alpha < \kappa$ fix families \mathcal{C}_s^α of closed subsets of X for $i = 0, 1$ and $s \in \kappa$, such that:

$$S^\alpha = \bigcup_{f \in \kappa} \bigcap_{n \in \omega}^0 \mathcal{C}_{f|n}^\alpha, \quad X - S^\alpha = \bigcup_{f \in \kappa} \bigcap_{n \in \omega}^1 \mathcal{C}_{f|n}^\alpha.$$

We may choose these families to be nested, so $s \subseteq t$ implies $\mathcal{C}_s^\alpha \subseteq \mathcal{C}_t^\alpha$, and we may choose them so that for $n \in \omega$ and $s \in \kappa$, the ρ-diameter of \mathcal{C}_s^α is less than 2^{-n}. For $\alpha < \kappa$, $i = 0, 1$, and $s \in \kappa$, set

$$\mathcal{S}_s^\alpha = \bigcup_{f \in \kappa} \bigcap_{n \in \omega}^i \mathcal{C}_{f|n}^\alpha \subseteq \mathcal{C}_s^\alpha.$$

Assume $E(\mathcal{S})$ has $> \kappa$ classes, and let $Z \subseteq X$ be a set of κ-many \mathcal{S}-inequivalent elements.

We will define for every $l \in \omega$, $\sigma \in \omega^2$, an ordinal $\alpha(\sigma) < \kappa$ and elements $s(\sigma, k)$ of κ^ω for $k < l$, so that setting

$$(1) \quad T_\sigma = \bigcap_{k < l} \alpha(\sigma, k) S_{(\sigma, k)}^\alpha \subseteq \bigcap_{k < l} \alpha(\sigma, k) C_{(\sigma, k)}^\alpha,$$

we have $\text{card}(Z \cap T_\sigma) = \kappa^+$. We will also arrange matters so that $\sigma \subseteq \tau$ implies $s(\sigma, k) \subseteq s(\tau, k)$ for all relevant k. We proceed by induction. Suppose then that $l \in \omega$, $\sigma \in \omega^2$, and suppose that for all $k < l$, $\alpha(\sigma|k)$ and $s(\sigma, k)$ have been defined and satisfy the conditions above.

In particular, $\text{card}(Z \cap T_\sigma) = \kappa^+$. We claim this assumption implies that there exists an $\alpha < \kappa$ such that both $Z \cap T_\sigma \cap S^\alpha$ and $(Z \cap T_\sigma) - S^\alpha$ have cardinality κ^+. For suppose the opposite, and setting, for each $\alpha < \kappa$, M^α is whichever of $Z \cap T_\sigma \cap S^\alpha$ or $(Z \cap T_\sigma) - S^\alpha$ has cardinality $< \kappa$, we would find that all elements of $Z - \bigcup_{\alpha < \kappa} M^\alpha$ would be $E(\mathcal{S})$-equivalent, hence that there could be only one such element, hence that $\text{card} Z = \kappa$, a contradiction! Let $\alpha(\sigma)$ be the least α with $\text{card}(Z \cap T_\sigma \cap S^\alpha) = \text{card}((Z \cap T_\sigma) - S^\alpha) = \kappa^+$. Now $Z \cap T_\sigma \cap S^{\alpha(\sigma)}$ is contained in

$$\bigcap_{k < l} \alpha(\sigma|k) S_{(\sigma, k)}^\alpha \cap S^{\alpha(\sigma)} = \bigcap_{k < l} \bigcup_{\tau < \kappa}^{\alpha(\sigma|k)} S_{(\sigma, k|\tau)}^{\alpha(\sigma|k)} \cap \bigcup_{s \in \omega^{l+1}}^{\alpha(\sigma)} S_s^{\alpha(\sigma)}.$$

So there exist $\nu_0, \nu_1, \ldots, \nu_{(l-1)}$ and s such that setting $s(\sigma \ast 0, k) = s(\sigma, k) \ast \nu_k$ for $k < l$, and $s(\sigma \ast 0, l) = s$, and defining $T_{\sigma \ast 0}$ as per (1) above,
we still have \(\text{card}(Z \cap T_{\sigma,0}) = \kappa^+ \). The \(s(\sigma \cdot 1, k) \) for \(k < l \) are similarly defined.

For \(g \in \omega^\omega \), \(\{ T_{g,n} : n \in \omega \} \) forms a nested sequence of nonempty closed sets with \(\rho \)-diameters converging to 0. Hence this family intersects in a point \(x_g \in X \). If \(g(m) = 0 \), then \(x_g \) belongs to

\[
\bigcap_{n > m} \mathcal{C}_k^{\alpha(g[m])} \subseteq S^{\alpha(g[m])}.
\]

Similarly, if \(g(m) = 1 \), then \(x_g \notin S^{\alpha(g[m])} \). Thus if \(g, h \) are two (distinct) elements of \(\omega^\omega \), \(x_g, x_h \) are \(E(S) \)-inequivalent, and incidentally \(x_g \neq x_h \). Thus \(A = \bigcup_{g \in \omega^\omega} \bigcap_{n \in \omega} T_{g,n} = \{ x_g : g \in \omega^\omega \} \) is an uncountable analytic set, and hence contains a perfect subset \(P \). Moreover, setting \(\mathcal{S} = \{ S^\alpha(a) : \alpha \in 2 \} \), any two elements of \(P \) are \(E(\mathcal{S}) \)-inequivalent, proving the theorem. □

Corollary 1. Let \(X \) be a Polish space, \(\kappa \) an infinite cardinal. Then any equivalence relation on \(X \) which is an intersection of \(\kappa \) CA equivalences has either \(< \kappa \) or else perfectly many equivalence classes.

Proof. We use a deep theorem of Silver [4]: Any CA(\(\Pi^1_1 \)) equivalence relation on a Polish space \(X \) has either countably many or else perfectly many equivalence classes. Now let \(E \) be an equivalence on a Polish space \(X \) of form \(\bigcap_{\alpha < \kappa} E_\alpha \) where the \(E_\alpha \) are CA equivalences. If any \(E_\alpha \) has perfectly many classes, so does \(E \). If each \(E_\alpha \) has only countably many classes \(\{ S_{\alpha,n} : n < N_\alpha \} \), \(N_\alpha < \omega \), then each of these \(S_{\alpha,n} \) is both CA (since \(E_\alpha \) is CA) and analytic (being the complement of \(\bigcup_{n \neq n'} S_{\alpha,m} \)) and hence is Borel. Thus in this case \(E = E(S) \) where \(S = \{ S_{\alpha,n} : \alpha < \kappa, n < N_\alpha \} \) is a family of \(\kappa \) Borel sets. Thus any intersection of \(\kappa \) CA equivalences either has perfectly many classes or else is generated by a family of \(\kappa \) Borel sets. Corollary 1 is immediate. This corollary answers a question of J. Steel. □

The referee has informed us that V. Harnik and M. Makkai [5] have obtained Corollary 1 (for \(X = \) Baire space) by a model-theoretic argument. The Theorem has somewhat more scope than this corollary, implying e.g. that if \(\mathcal{S} \) is a family of \(\aleph_1 \) analytic sets, \(E(\mathcal{S}) \) has \(< \aleph_1 \) or perfectly many classes.

Corollary 2. Any analytic equivalence relation on a Polish space \(X \) has either \(< \omega_1 \) or else perfectly many classes.

Proof. Elsewhere [2] we have shown: Any analytic equivalence relation on a Polish space \(X \) is an intersection of \(\omega_1 \) Borel equivalences. Corollary 2 is then immediate. Actually in [2] we establish more: A CPC4(\(\Pi^1_1 \)) equivalence of the special form \(xEy \leftrightarrow \forall z \in X (x, y, z) \in D \), where \(D \subseteq X^3 \) is analytic, and for each fixed \(z \), \(\{ (x, y) : (x, y, z) \in D \} \) is an equivalence relation, is an intersection of \(\omega_1 \) CA equivalences. So the cardinal estimates on the number of classes in Corollary 2 apply to such special CPC4 equivalences, too. Corollary 2 was the main result of our thesis [1]. It answers a question of H. Friedman. □
BIBLIOGRAPHY

DEPARTMENT OF PHILOSOPHY, PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08540