Equivalences generated by families of Borel sets
HTML articles powered by AMS MathViewer
- by John P. Burgess
- Proc. Amer. Math. Soc. 69 (1978), 323-326
- DOI: https://doi.org/10.1090/S0002-9939-1978-0476524-6
- PDF | Request permission
Abstract:
The equivalence relation on the reals generated by a family of ${\aleph _\alpha }$ Borel sets has either $\leqslant {\aleph _\alpha }$ or else exactly ${2^{{\aleph _0}}}$ equivalence classes.References
- J. P. Burgess, Infinitary languages and descriptive set theory, Doctoral Dissertation, Univ. of California, Berkeley, Calif., 1974.
- John P. Burgess, A reflection phenomenon in descriptive set theory, Fund. Math. 104 (1979), no. 2, 127–139. MR 551663, DOI 10.4064/fm-104-2-127-139
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- Jack H. Silver, Counting the number of equivalence classes of Borel and coanalytic equivalence relations, Ann. Math. Logic 18 (1980), no. 1, 1–28. MR 568914, DOI 10.1016/0003-4843(80)90002-9
- V. Harnik and M. Makkai, A tree argument in infinitary model theory, Proc. Amer. Math. Soc. 67 (1977), no. 2, 309–314. MR 472506, DOI 10.1090/S0002-9939-1977-0472506-8
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 69 (1978), 323-326
- MSC: Primary 04A25
- DOI: https://doi.org/10.1090/S0002-9939-1978-0476524-6
- MathSciNet review: 0476524