On the localization of the spectrum for systems of operators
HTML articles powered by AMS MathViewer
- by Ştefan Frunză
- Proc. Amer. Math. Soc. 69 (1978), 233-239
- DOI: https://doi.org/10.1090/S0002-9939-1978-0477810-6
- PDF | Request permission
Abstract:
Let $a = ({a_1}, \ldots ,{a_n})$ be a commuting system of linear continuous operators on a complex Banach space X. We show that, for any $x \in X$, the local analytic spectrum $\sigma (a,x)$ [1] is contained in the spectral hull of the local spectrum ${\text {sp}}(a,x)$ [4].References
- E. Albrecht, Funktionalkalküle in mehreren veränderlichen, Ph.D. Dissertation, Mainz Univ., 1972.
- Ion Colojoară and Ciprian Foiaş, Theory of generalized spectral operators, Mathematics and its Applications, Vol. 9, Gordon and Breach Science Publishers, New York-London-Paris, 1968. MR 0394282
- Nelson Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321–354. MR 63563, DOI 10.2140/pjm.1954.4.321
- Ştefan Frunză, The Taylor spectrum and spectral decompositions, J. Functional Analysis 19 (1975), no. 4, 390–421. MR 0394259, DOI 10.1016/0022-1236(75)90064-6
- S. Frunză, On Taylor functional calculus, Studia Math. 52 (1974/75), 239–242. MR 361864, DOI 10.4064/sm-52-3-239-242
- Joseph L. Taylor, A joint spectrum for several commuting operators, J. Functional Analysis 6 (1970), 172–191. MR 0268706, DOI 10.1016/0022-1236(70)90055-8
- Joseph L. Taylor, The analytic-functional calculus for several commuting operators, Acta Math. 125 (1970), 1–38. MR 271741, DOI 10.1007/BF02392329
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 69 (1978), 233-239
- MSC: Primary 47A10; Secondary 47A60, 47B40
- DOI: https://doi.org/10.1090/S0002-9939-1978-0477810-6
- MathSciNet review: 0477810