QUASI-SIMILARITY OF WEAK CONTRACTIONS

PEI YUAN WU

Abstract. Let T be a completely nonunitary (c.n.u.) weak contraction (in the sense of Sz.-Nagy and Foias). We show that T is quasi-similar to the direct sum of its C_0 part and C_{11} part. As a corollary, two c.n.u. weak contractions are quasi-similar to each other if and only if their C_0 parts and C_{11} parts are quasi-similar to each other, respectively. We also completely determine when c.n.u. weak contractions and C_0 contractions are quasi-similar to normal operators.

Recall that a contraction T on the Hilbert space H is called a weak contraction if its spectrum $\sigma(T)$ does not fill the open unit disc D and $1 - T^*T$ is of finite trace. Contained in this class are all contractions T with finite defect index $d_T \equiv \dim \text{rank}(1 - T^*T)^{1/2}$ and with $\sigma(T) \not= \overline{D}$ (cf. [9, p. 323]).

Assume that T is a weak contraction which is also completely nonunitary (c.n.u.), that is, T has no nontrivial reducing subspace on which T is a unitary operator. For such a contraction, Sz.-Nagy and Foiaş obtained a C_0-C_{11} decomposition and then found a variety of invariant subspaces which furnish its spectral decomposition (cf. [9, Chapter VIII]). In this note we are going to supplement other interesting properties of such contractions. We show that a c.n.u. weak contraction is quasi-similar to the direct sum of its C_0 part and C_{11} part. Although the proof is not difficult, some of its interesting applications justify the elaboration here. An immediate corollary is that two such contractions are quasi-similar to each other if and only if their C_0 parts are quasi-similar and their C_{11} parts are quasi-similar to each other. This is, in turn, used to show that two quasi-similar weak contractions have equal spectra. Another interesting consequence is that a c.n.u. weak contraction is quasi-similar to a normal operator if and only if its C_0 part is. The latter can be shown to be equivalent to the condition that its minimal function is a Blaschke product with simple zeros, thus completely settling the question when a c.n.u. weak contraction is quasi-similar to a normal operator.

Before we start to prove our main theorem, we provide some background work for our notations and terminology. The main reference is [9].

1 This research was done while the author was visiting Indiana University during the summer of 1976.
Let T be an arbitrary contraction on H. Let $H_0 = \{h \in H : T^n h \to 0\}$, $H'_0 = \{h \in H : T^{*n} h \to 0\}$, $H'_1 = H \ominus H_0$ and $H_1 = H \ominus H'_0$. Note that H_0 and H'_0 are invariant for T and T^*, respectively. Consider the triangulations of T with respect to the orthogonal decompositions $H = H_0 \oplus H'_1$ and $H = H_1 \oplus H'_0$:

$$T = \begin{bmatrix} T_0 & X \\ 0 & T'_1 \end{bmatrix} \quad \text{and} \quad T = \begin{bmatrix} T_1 & Y \\ 0 & T'_0 \end{bmatrix}.$$

The triangulations are of type

$$\begin{bmatrix} C_0 & * \\ 0 & C_1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} C_1 & * \\ 0 & C_0 \end{bmatrix},$$

respectively (cf. [9, p. 73]). Recall that a contraction T is of class C_0 (resp. C_0) if $T^n h \to 0$ (resp. $T^* h \to 0$) as $n \to \infty$ for all h and T is of class C_1 (resp. C_1) if $T^n h \to 0$ (resp. $T^{*n} h \to 0$) as $n \to \infty$ for all $h \neq 0$. T is of class C_{∞} if $T \in C_0 \cap C_0$ and of class C_{11} if $T \in C_1 \cap C_1$. A c.n.u. contraction T is said to be of class C_0 if there exists a nonzero function $u \in H^\infty$ such that $u(T) = 0$. In this case we can choose u to be a minimal inner function in the sense that u is an inner function such that $u(T) = 0$ and u divides (in H^∞) every other function $v \in H^\infty$ for which $v(T) = 0$. Such a function is called a minimal function for T and is denoted by m_T. If T is a c.n.u. weak contraction, then in the previous triangulations T_0 is of class C_0 and T_1 is of class C_{11}, called the C_0 part and the C_{11} part of T (cf. [9, p. 331]). Note that in this case we have $H_0 \cup H_1 = H$ and $H_0 \cap H_1 = \{0\}$ (cf. [9, p. 332]). For arbitrary operators T_1, T_2 on H_1, H_2, respectively, $T_1 < T_2$ denotes that T_1 is a quasi-affine transform of T_2, that is, there exists a linear one-to-one and continuous transformation S from H_1 onto a dense linear manifold in H_2 (called quasi-affinity) such that $ST_1 = T_2S$. T_1 and T_2 are quasi-similar if $T_1 < T_2$ and $T_2 < T_1$.

Our main theorem is the following:

Theorem 1. Let T be a c.n.u. weak contraction on H. Let T_0 and T_1 be the C_0 part and C_{11} part of T. Then T is quasi-similar to $T_0 \oplus T_1$.

Proof. Let $S : H_0 \oplus H_1 \to H$ be defined by $S(h_0 \oplus h_1) = h_0 + h_1$. Certainly T is a continuous linear transformation. Since $H_0 \cup H_1 = H$ and $H_0 \cap H_1 = \{0\}$, it is easily seen that S is a quasi-affinity such that $S(T_0 \oplus T_1) = TS$. Thus $T_0 \oplus T_1 < T$. Note that T^* is also a c.n.u. weak contraction and T_0^* and T_1^* are the C_0 and C_{11} parts of T^* (cf. [9, p. 332]). As above, we have $T_0^* \oplus T_1^* < T^*$. Hence $T < T_0^* \oplus T_1^*$, and $T_0 \oplus T_1 < T < T_0^* \oplus T_1^*$. Let V be the quasi-affinity from $H_0 \oplus H_1$ to $H_0^* \oplus H_1^*$ such that $V(T_0 \oplus T_1) = (T_0^* \oplus T_1^*)V$. Since T_0 and T_1 are of class C_0 and C_{11}, respectively, it is easily seen that $VH_0 \subseteq H_0^*$. Say,

$$V = \begin{bmatrix} V_0 & Z \\ 0 & V_1 \end{bmatrix}$$
QUASI-SIMILARITY OF WEAK CONTRACTIONS

is the corresponding triangulation. An easy calculation shows that $ZT_1 = T_0^*Z$. Since T_1 is of class C_{11} and T_0 is of class C_{00}, we must have $Z = 0$ (cf. [4, Lemma 4.4]). Thus V_0 and V_1 are quasi-affinities satisfying $V_0T_0 = T_0^*V_0$ and $V_1T_1 = T_1^*V_1$. Hence $T_0 < T_0'$ and $T_1 < T_1'$. It follows from the uniqueness of the Jordan model for C_0 contractions that T_0 and T_0' are quasi-similar to each other (cf. [2]). To show that T_1 is quasi-similar to T_1', note that T_1 and T_1', being C_{11} contractions, are quasi-similar to unitary operators, say U_1 and U_1', respectively. We have $U_1 < U_1'$. By a theorem of Douglas [5], U_1 and U_1' are unitarily equivalent. Hence T_1 is quasi-similar to T_1', and T is quasi-similar to $T_0 \oplus T_1$.

An immediate corollary of Theorem 1 is

Corollary 1. Let T_1 and T_2 be c.n.u. weak contractions. Then T_1 and T_2 are quasi-similar to each other if and only if their C_0 parts are quasi-similar and their C_{11} parts are quasi-similar to each other.

Proof. The sufficiency follows immediately from Theorem 1. The necessity can be proved by a similar argument as in Theorem 1.

In particular, for c.n.u. contractions with scalar-valued characteristic functions, we have

Corollary 2. For $j = 1, 2$, let T_j be a c.n.u. contraction with the scalar-valued characteristic function $\psi_j \not\equiv 0$. Let $\psi_j = \psi_{ji}\psi_{je}$ be the canonical factorization into the product of its inner part ψ_{ji} and outer part ψ_{je}, and let $E_j = \{e^{it}: |\psi_j(e^{it})| < 1\}$. Let

$$T_j = \begin{pmatrix} T_{j1} & X_j \\ 0 & T_{j2} \end{pmatrix}$$

be the triangulation of type

$$\begin{bmatrix} C_1 & * \\ 0 & C_0 \end{bmatrix}, \quad j = 1, 2.$$

Then the following are equivalent:

(i) T_1 is quasi-similar to T_2;

(ii) T_{12} is quasi-similar to T_{21} and T_{12} is unitarily equivalent to T_{22};

(iii) $\psi_{1i} = \psi_{2i}$ and E_1 and E_2 differ by a set of zero Lebesgue measure.

Proof. Since T_1 and T_2 are c.n.u. weak contractions, the equivalence of (i) and (ii) follows from Corollary 1. Note that T_{ji} is quasi-similar to the multiplication by e^{it} on the space $L^2(E_j)$ and T_{j2} is unitarily equivalent to the compression of the shift $S(\psi_{ji})$ on $H^2 \ominus \psi_{ji}H^2$, $j = 1, 2$. Thus the equivalence of (ii) and (iii) follows immediately.

The equivalence of (i) and (iii) in Corollary 2 is compatible with the result of Kriete [7] that T_1 is similar to T_2 if and only if $\psi_1/\psi_2, \psi_2/\psi_1 \in H^\infty$ and E_1 and E_2 differ by a set of zero Lebesgue measure.

Corollary 3. Let T_1 and T_2 be c.n.u. weak contractions. If T_1 and T_2 are
quasi-similar to each other, then \(\sigma(T_1) = \sigma(T_2) \).

Proof. For \(j = 1, 2 \), let \(T_{j0} \) and \(T_{j1} \) be the \(C_0 \) part and \(C_{11} \) part of \(T_j \). By Corollary 1, \(T_{10} \) and \(T_{11} \) are quasi-similar to \(T_{20} \) and \(T_{21} \), respectively. Since the spectrum of a \(C_0 \) contraction is completely determined by its minimal function [9, p. 126], and \(T_{10} \) and \(T_{20} \) have the same minimal function, we have \(\sigma(T_{10}) = \sigma(T_{20}) \).

To show that \(\sigma(T_{11}) = \sigma(T_{21}) \), let \(U_j \) be the residual part of the minimal unitary dilation of \(T_{j1}, j = 1, 2 \) (cf. [9, p. 61]). Note that \(T_{j1} \) is quasi-similar to \(U_j \) and \(\sigma(T_{j1}) \) lies entirely on the unit circle (cf. [9, pp. 75, 328]). It follows that \(\sigma(T_{j1}) = \sigma(U_j) \) (cf. [9, pp. 311–312]). By Douglas’ theorem [5], \(U_1 \) and \(U_2 \) are quasi-similar implies they are unitarily equivalent. Thus \(\sigma(T_{11}) = \sigma(U_1) = \sigma(U_2) = \sigma(T_{21}) \). Since \(\sigma(T_j) = \sigma(T_{j0}) \cup \sigma(T_{j1}) \) [9, p. 332], we have \(\sigma(T_1) = \sigma(T_2) \), completing the proof.

We remark that the proof can be modified to show that quasi-similar weak contractions (not necessarily c.n.u.) have equal spectra. This result is not new. It also follows from the facts that weak contractions are decomposable [6] and quasi-similar decomposable operators have equal spectra [3]. However, our proof seems more direct.

In the remaining part of this note we are concerned with the question when a c.n.u. weak contraction is quasi-similar to a normal operator. The next theorem reduces the problem to the \(C_0 \) part of the c.n.u. weak contraction.

Theorem 2. Let \(T \) be a c.n.u. weak contraction on \(H \). Let

\[
T = \begin{bmatrix}
T_0 & X \\
0 & T_1'
\end{bmatrix}
\]

be the triangulation of type

\[
\begin{bmatrix}
C_0 & * \\
0 & C_1
\end{bmatrix}
\]

on the (orthogonal) decomposition \(H = H_0 \oplus H_1' \). Then \(T \) is quasi-similar to a normal operator if and only if \(T_0 \) is.

Proof. The sufficiency follows trivially from Theorem 1. To prove the necessity, we may assume that \(T \) is quasi-similar to a normal operator \(N \) on the space \(K \) with \(\|N\| \leq \|T\| < 1 \) (cf. [1, Proof of the sufficiency part of Theorem]). Let \(K = K_1 \oplus K_2 \) be the direct sum of reducing subspaces for \(N \) such that \(N_1 = N|K_1 \) is c.n.u. and \(N_2 = N|K_2 \) is unitary. Let \(S \) be the quasi-affinity from \(H \) to \(K \) such that \(ST = NS \). Since \(T_0 \) is of class \(C_0 \) and \(N_2 \) is of class \(C_1 \), it is easily seen that \(SH_0 \subseteq K_1 \). Note that \(\overline{SH_0} \) is an invariant subspace for \(N_1 \). Let \(N_1' = N_1|\overline{SH_0} \). Then \(S_1 = S|H_0 \) is a quasi-affinity from \(H_0 \) to \(\overline{SH_0} \) satisfying \(S_1T_0 = N_1'S_1 \). Since \(T_0 \) is of class \(C_0 \), so is \(N_1' \) (cf. [9, p. 125]). By the uniqueness of the Jordan model for \(C_0 \) contractions, we have \(T_0 \) is quasi-similar to \(N_1' \) (cf. [2]). Since \(N_1' \) is subnormal and \(\sigma(N_1') \) has planar
area zero (cf. [9, p. 126]), it follows from Putnam’s theorem [8] that \(N' \) is normal. This completes the proof.

Notice that Theorem 2 is compatible with the result that \(T \) is similar to a normal operator if and only if \(T_0 \) is similar to a normal operator and \(T' \) is similar to a unitary operator. This is true even for an arbitrary c.n.u. contraction (cf. [10, Theorem 3]).

Since the \(C_0 \) part of a c.n.u. weak contraction is a \(C_0 \) contraction, the next theorem furnishes the complete solution to the previously posed question.

Theorem 3. Let \(T \) be a \(C_0 \) contraction on the space \(H \) with the minimal function \(m_T \). Then \(T \) is quasi-similar to a normal operator if and only if \(m_T \) is a Blaschke product with simple zeros.

Proof. Necessity. Let \(T \) be quasi-similar to the normal operator \(N \) on the space \(K \) and let \(S \) be the quasi-affinity from \(H \) to \(K \) such that \(ST = NS \). As before we may assume that \(\|N\| < \|T\| < 1 \) (cf. [1]). Now we show that \(N \) must be c.n.u. Indeed, for any \(k \in K \) and \(\epsilon > 0 \), let \(h \in H \) be such that \(\|k - Sh\| < \epsilon \). Since \(ST^n h = N^n Sh \to 0 \) as \(n \to \infty \), we have \(\|N^n Sh\| < \epsilon \) for all \(n > N_0 \). Hence

\[
\|N^n k\| < \|N^n k - N^n Sh\| + \|N^n Sh\| < \|N\| \|k - Sh\| + \|N^n Sh\| < \epsilon + \epsilon = 2\epsilon \quad \text{for all } n > N_0.
\]

This shows that \(N^n k \to 0 \) for all \(k \in K \) and hence \(N \) is c.n.u. Since \(N \) is quasi-similar to a \(C_0 \) contraction, \(N \) is also a \(C_0 \) contraction with the same minimal function \(m_N = m_T \) (cf. [9, p. 125]). Let \(m_T = Bs \), where

\[
B(\lambda) = \prod_i \frac{\bar{\lambda}_i}{|\lambda_i|} \left(\frac{-\lambda_i}{1 - \bar{\lambda}_i \lambda} \right)^{n_i}
\]

is a Blaschke product and \(s \) is a singular function. Note that \(\lambda_i \) is a characteristic value of \(N \) with index \(n_i \) (cf. [9, p. 135]). Since \(N \) is a normal operator, \(n_i = 1 \) for all \(i \). Let \(K_i \) be the corresponding eigenspace. Then \(\bigvee_i K_i \) reduces \(N \) and the normal operator \(N_1 = N|(\bigvee_i K_i)^\perp \) has no eigenvalue. Hence the minimal function of the \(C_0 \) contraction \(N_1 \) must be \(s \) (cf. [9, p. 129]). It follows that \(s(N_1) \) is contained in the unit circle, and thus \(N_1 \) is a unitary operator. Since \(N \) is c.n.u., we must have \((\bigvee_i K_i)^\perp = \{0\} \) and \(K = \bigvee_i K_i \). Hence \(m_T = B \) is a Blaschke product with simple zeros (cf. [9, p. 135]).

Sufficiency. Assume that \(m_T \) is a Blaschke product with simple zeros, say,

\[
m_T(\lambda) = \prod_i \frac{\bar{\lambda}_i}{|\lambda_i|} \frac{-\lambda_i}{1 - \bar{\lambda}_i \lambda},
\]

where the distinct \(\lambda_i \)'s satisfy \(|\lambda_i| < 1 \) and \(\sum_i(1 - |\lambda_i|) < \infty \). For each \(i \) let \(H_i = \{ h \in H : (T - \lambda_i) h = 0 \} \). Then \(T|H_i \) is a normal operator and the system \(\{ H_i \}_{i=1}^{\infty} \) of invariant subspaces satisfies

\[
H = H_i + \bigvee_{j \neq i} H_j \quad \text{for each } i, \quad \text{and} \quad \bigcap_i \left(\bigvee_{j > i} H_j \right) = \{0\}.
\]
That is, $\{H_i\}_{i=1}^{\infty}$ is a basic system of invariant subspaces for T. By a result of Apostol [1], T is quasi-similar to a normal operator, completing the proof.

REFERENCES

Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan, Republic of China