A THEOREM ON C^*-EMBEDDING

F. K. DASHIELL, JR.

ABSTRACT. Theorem. In a totally nonmeager and regular space, every countable intersection of open, normal, C^*-embedded subsets is normal and C^*-embedded.

A subspace G of a topological space S is called C^*-embedded if every bounded continuous $f: G \to \mathbb{R}$ extends continuously to S. This note gives a short and elementary proof of the theorem in the abstract. This extends a result of E. Aron ([1], otherwise unpublished) which asserts that in a compact space, every countable intersection of dense, C^*-embedded, open F_σ subsets is C^*-embedded. The original proof in [1] is rather long and nonelementary. The interest of this theorem and its relevance to certain problems in rings of continuous functions are discussed in [4, §6], [5], and [6, §5.8].

A space is called totally nonmeager (see [2, p. 252]) if every closed subspace is second category (i.e., nonmeager) relative to itself.

Proof of the Theorem. Suppose S is a totally nonmeager, regular space and G_1, G_2, \ldots are open, normal, C^*-embedded subsets. It suffices to prove disjoint closures in S (for then, since G_1 is normal and $\overline{Z_1} \cap \overline{Z_2} \cap G_1 = \emptyset$, G would be normal and C^*-embedded in G_1 [3, Theorem 1.17]). Put

$$K = \overline{Z_1} \cap \overline{Z_2}.$$

Clearly $G \cap K = \emptyset$. Suppose (toward a contradiction) that $K \neq \emptyset$. Fix n, pick any closed neighborhood F of a point in K, and set $A_i = G_n \cap \overline{Z_i} \cap F$, $i = 1, 2$. Then

$$\emptyset \neq \overline{Z_1} \cap \overline{F} \cap \overline{Z_2} \cap \overline{F} \subset A_1 \cap A_2,$$

so the relatively closed subsets A_1, A_2 of the normal, C^*-embedded set G_n do not have disjoint closures. Thus

$$\emptyset \neq A_1 \cap A_2 = G_n \cap K \cap F.$$

Since F was arbitrary and K is regular, $G_n \cap K$ is a dense relatively open subset of the nonmeager space K (for all n). Thus $\emptyset \neq \cap_{n=1}^{\infty}(G_n \cap K) = G \cap K$, a contradiction.

REFERENCES

DEPARTMENT OF MATHEMATICS, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA 91125

Current address: R and D Associates, P. O. Box 9695, Marina del Rey, California 90291