Generalizations of Temple’s inequality
HTML articles powered by AMS MathViewer
- by Evans M. Harrell
- Proc. Amer. Math. Soc. 69 (1978), 271-276
- DOI: https://doi.org/10.1090/S0002-9939-1978-0487733-4
- PDF | Request permission
Abstract:
T. Kato’s little-known generalization of a classic variational inequality for eigenvalues is extended to the case of normal operators and briefly discussed.References
- W. M. Greenlee, Perturbation of bounded states of the radial equation by potentials with a repulsive hard core—first order asymptotics, J. Functional Analysis (to appear).
- Evans M. Harrell II, Singular perturbation potentials, Ann. Physics 105 (1977), no. 2, 379–406. MR 449317, DOI 10.1016/0003-4916(77)90246-9
- Tosio Kato, On the upper and lower bounds of eigenvalues, J. Phys. Soc. Japan 4 (1949), 334–339. MR 38738, DOI 10.1143/JPSJ.4.334
- Tosio Kato, On the convergence of the perturbation method. I, Progr. Theoret. Phys. 4 (1949), 514–523. MR 34510, DOI 10.1143/ptp/4.4.514
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972. MR 0493419 G. Temple, The theory of Rayleigh’s principle as applied to continuous systems, Proc. Roy. Soc. London Ser. A 119 (1928), 276-293.
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 69 (1978), 271-276
- MSC: Primary 49G20
- DOI: https://doi.org/10.1090/S0002-9939-1978-0487733-4
- MathSciNet review: 0487733