On the notion of $n$-cardinality
HTML articles powered by AMS MathViewer
- by Teodor C. Przymusiński
- Proc. Amer. Math. Soc. 69 (1978), 333-338
- DOI: https://doi.org/10.1090/S0002-9939-1978-0491191-3
- PDF | Request permission
Abstract:
In this paper we introduce and investigate the notion of n-cardinality, which turned out to be useful in constructions involving product spaces and has a number of interesting applications.References
- A. V. Arhangel′skiÄ, The power of bicompacta with first axiom of countability, Dokl. Akad. Nauk SSSR 187 (1969), 967–970 (Russian). MR 0251695
- Eric K. van Douwen, A technique for constructing honest locally compact submetrizable examples, Topology Appl. 47 (1992), no. 3, 179–201. MR 1192308, DOI 10.1016/0166-8641(92)90029-Y
- Ryszard Engelking, Topologia ogólna, Biblioteka Matematyczna [Mathematics Library], vol. 47, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1975 (Polish). MR 0500779
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- K. Kuratowski, Applications of the Baire-category method to the problem of independent sets, Fund. Math. 81 (1973), no. 1, 65–72. MR 339092, DOI 10.4064/fm-81-1-65-72
- Teodor C. Przymusiński, Normality and paracompactness in finite and countable Cartesian products, Fund. Math. 105 (1979/80), no. 2, 87–104. MR 561584, DOI 10.4064/fm-105-2-87-104 —, On the dimension of product spaces and an example of M. Wage (to appear).
- Teodor C. Przymusiński, Products of perfectly normal spaces, Fund. Math. 108 (1980), no. 2, 129–136. MR 594312, DOI 10.4064/fm-108-2-129-136
- Teodor C. Przymusiński, Topological properties of product spaces and the notion of $n$-cardinality, Topology Proc. 2 (1977), no. 1, 233–241 (1978). MR 540608
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 69 (1978), 333-338
- MSC: Primary 04A05; Secondary 54A25, 54E35
- DOI: https://doi.org/10.1090/S0002-9939-1978-0491191-3
- MathSciNet review: 0491191