MAXIMAL RESIDUE DIFFERENCE SETS MODULO p

DUNCAN A. BUELL AND KENNETH S. WILLIAMS

Abstract. Let $p \equiv 1 \pmod{4}$ be a prime. A residue difference set modulo p is a set $S = \{a_i\}$ of integers a_i such that $(\frac{a_i}{p}) = +1$ and $(\frac{a_i - a_j}{p}) = +1$ for all i and j with $i \neq j$, where $(\frac{n}{p})$ is the Legendre symbol modulo p. Let m_p be the cardinality of a maximal such set S. The authors estimate the size of m_p.

1. Introduction. Let $p \equiv 1 \pmod{4}$ be a prime. A residue difference set modulo p is a set of integers $\{a_1, \ldots, a_k\}$, with $1 < a_i < p - 1$, such that

1. $(\frac{a_i}{p}) = +1$, $1 < i < k$,
2. $(\frac{a_i - a_j}{p}) = +1$, $1 < i, j < k$, $i \neq j$,

where $(\frac{n}{p})$ is the Legendre symbol modulo p. The maximal cardinality of a residue difference set modulo p is denoted by m_p. The problem of estimating m_p was posed at the West Coast Number Theory Conference in La Jolla, California in December 1976. We obtain the following estimates.

Theorem. (i) $m_p > \frac{1}{2} \log p$ for all p,
(ii) $m_p < p^{1/2} \log p$ for all p,
(iii) $m_p < (1 + \varepsilon) p^{1/2} \log p / 4 \log 2$ for all $p > C$, where $C \equiv C(\varepsilon)$ is a constant depending only on ε.

Any residue difference set can be transformed into a set containing 1 (by multiplication by any $a_i^{-1} \pmod{p}$), so we need only consider residue difference sets of the form

$S = \{a_1, a_2, \ldots, a_k\}$,

where $1 = a_1 < a_2 < \cdots < a_k$. Let $N_p(k)$ be the number of such sets. The value of $N_p(2)$ is exactly $(p - 5)/4$; we shall, in proving the theorem, obtain a lower bound for $N_p(k)$ for $k \geq 3$.

The proof of the theorem requires the following lemma, which we state here and prove in §3.

Lemma. For any integer $k \geq 1$, let $a_0, a_1, \ldots, a_{k-1}$ be k integers such that...
\[a_0 = 0, a_1 = 1, \, 1 < a_i < p \quad (i = 2, 3, \ldots, k - 1), \, a_i \neq a_j \text{ for } i \neq j. \]

Set
\[S(a_0, \ldots, a_{k-1}) = \sum_{x \neq a_0, \ldots, a_{k-1}}\prod_{j=0}^{k-1} \left(1 + \left(\frac{x - a_j}{p} \right) \right). \]

Then \[|S(a_0, \ldots, a_{k-1}) - p| \leq p^{1/2}((k - 2)2^{k-1} + 1) + k2^{k-1}, \] and if \(p \geq k^2 \) the expression on the right-hand side of this inequality is at most \(p^{1/2}k2^{k-1} \).

Use will also be made of the following simple and easily-proved inequality: if \(b_1, \ldots, b_n \) are \(n \) numbers such that \(p > b_1 > b_2 > \cdots > b_n > 0 \) then
\[(p - b_1) \cdots (p - b_n) > p^n - p^{n-1}(b_1 + \cdots + b_n). \]

2. Proof of the theorem. As \(m_5 = 1, \, m_13 = m_{17} = 2, \, m_{29} = m_{37} = 3, \, m_{41} = m_{53} = 4, \) part (i) of the theorem is easily verified for \(p < 53 \). Thus we can assume \(p \geq 61 \), so that \(\frac{1}{2} \log p > 2 \). In order to complete the proof we must show that \(N_p(k) > 0 \) for \(2 < k < \frac{1}{2} \log p \). To do this, we use the following expression for \(N_p(k) \):

\[
N_p(k) = \frac{1}{2(k-1)(k+2)/2} \sum_{a_2, \ldots, a_k} \left\{ 1 + \left(\frac{a_2}{p} \right) \right\} \cdots \left\{ 1 + \left(\frac{a_k}{p} \right) \right\} \\
\cdot \prod_{2 < j < i < k} \left\{ 1 + \left(\frac{a_i - a_j}{p} \right) \right\} \\
= \frac{1}{2(k-1)(k+2)/2(k-1)!} \sum_{1 < a_2 < p, a_i \neq a_j, i \neq j} \left\{ 1 + \left(\frac{a_2}{p} \right) \right\} \cdots \left\{ 1 + \left(\frac{a_k}{p} \right) \right\} \\
\cdot \prod_{2 < j < i < k} \left\{ 1 + \left(\frac{a_i - a_j}{p} \right) \right\} \\
= \frac{1}{2(k-1)(k-2)/2(k-1)!} \sum_{1 < a_2 < p} \left\{ 1 + \left(\frac{a_2}{p} \right) \right\} \left\{ 1 + \left(\frac{a_2 - 1}{p} \right) \right\} \\
\cdots \sum_{1 < a_{k-1} < p, a_{k-1} \neq a_2, \ldots, a_{k-2}} \left\{ 1 + \left(\frac{a_{k-1}}{p} \right) \right\} \left\{ 1 + \left(\frac{a_{k-1} - 1}{p} \right) \right\} \\
\cdot \prod_{j=2}^{k-2} \left\{ 1 + \left(\frac{a_{k-1} - a_j}{p} \right) \right\} S(a_0, \ldots, a_{k-1}).
\]
Since \(p > \left(\frac{1}{2} \log p \right)^2 \) (for all \(p \)) and as all the summands in the above expression for \(N_p(k) \) are nonnegative, we can apply the lemma successively to obtain

\[
N_p(k) \geq \frac{1}{2^{(k-1)(k+2)/2}(k-1)!} \left(p - 2 \cdot 2^{\frac{1}{2}} \right) \cdots \left(p - k \cdot 2^{\frac{k}{2}} \right).
\]

Since for all integers \(k \geq 2 \) we have \(\log(k - 1) + k \log 2 < k \), and as \(k < \frac{1}{2} \log p \), we obtain

\[
(2.1) \quad p^{1/2} > (k - 1)2^k > k2^{k-1}.
\]

Applying (1.1) we obtain

\[
N_p(k) > \frac{1}{2^{(k-1)(k+2)/2}(k-1)!} \left\{ p^{k-1} - p^{k-3/2} (2 \cdot 2 + \cdots + k \cdot 2^{k-1}) \right\}
\]

\[
= \frac{1}{2^{(k-1)(k+2)/2}(k-1)!} \left\{ p^{k-1} - (k - 1)2^k p^{k-3/2} \right\},
\]

and \(N_p(k) > 0 \) follows from (2.1). Thus \(m_p > \frac{1}{2} \log p \) for all primes \(p \).

We now turn to the proofs of parts (ii) and (iii) of the theorem. The set of possible values of \(a_2 \) so that \(\{1, a_2\} \) is a residue difference set modulo \(p \) is

\[
A_2 = \left\{ b \mid \left(\frac{b}{p} \right) = \left(\frac{b - 1}{p} \right) = +1 \right\}.
\]

Fixing a value of \(a_2 \in A_2 \), the set of possible values of \(a_3 \) so that \(\{1, a_2, a_3\} \) is a residue difference set modulo \(p \) is

\[
A_3 = \left\{ b \mid b \in A_2, \left(\frac{b - a_2}{p} \right) = +1 \right\}.
\]

Continuing in this way, one obtains for any residue difference set \(S = \{1, a_2, \ldots, a_{k-1}\} \), a set \(A_k \) of possible values of \(a_k \) so that \(\{1, a_2, \ldots, a_k\} \) is a residue difference set. If \(\alpha_k \) denotes the number of elements of \(A_k \), then the residue difference set of maximal length that contains \(S \) as a subset certainly has at most \(k - 1 + \alpha_k \) elements, where

\[
\alpha_k = \frac{1}{2^k} \sum_{a_{k-1} < a_k < p} \left\{ 1 + \left(\frac{a_k}{p} \right) \right\} \left\{ 1 + \left(\frac{a_k - 1}{p} \right) \right\} \left\{ 1 + \left(\frac{a_k - a_2}{p} \right) \right\} \cdots \left\{ 1 + \left(\frac{a_k - a_{k-1}}{p} \right) \right\}
\]

\[
< \frac{1}{2^k} \sum_{a = 0}^{p-1} \prod_{i=0}^{k-1} \left(1 + \left(\frac{a - a_i}{p} \right) \right) = \frac{1}{2^k} S(a_0, \ldots, a_{k-1}).
\]

Thus, if \(m_p > k - 1 \), there exists a set \(S = \{1, a_2, \ldots, a_{k-1}\} \) which is a subset of a residue difference set of \(m_p \) elements, and

\[
m_p < k - 1 + \frac{1}{2^k} S(a_0, \ldots, a_{k-1}).
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Hence from the lemma we have

\[m_p < k - 1 + \frac{1}{2^k} \left\{ p + p^{1/2}\left((k - 2)2^{k-1} + 1 \right) + k2^{k-1} \right\} \]

\[\leq \frac{3k}{2} - 1 + \frac{p}{2^k} + \left(\frac{k - 1}{2} \right) p^{1/2}. \]

If we now choose \(k = 1 + \lceil \log_2 p / \log 2 \rceil \), we see that \(m_p > \lceil \log_2 p / \log 2 \rceil \) implies

\[m_p < \frac{3}{4 \log 2} \log p + \frac{1}{2} p^{1/2} + \frac{p^{1/2} \log p}{4 \log 2}. \]

Now for \(p > 37 \) we have

\[m_p \leq \left(\frac{3}{4 \sqrt{37}} \log 2 + \frac{1}{2 \sqrt{37}} \log 37 + \frac{1}{\log 37} + \frac{1}{4 \log 2} \right) p^{1/2} \log p \]

\[< (0.18 + 0.03 + 0.28 + 0.37) p^{1/2} \log p \]

\[= 0.86 p^{1/2} \log p \]

\[< p^{1/2} \log p. \]

As the inequality \(m_p < p^{1/2} \log p \) is easy to check for \(p = 5, 13, 17 \) and 29, this completes the proof of (ii).

Part (iii) follows by choosing \(p > C(\epsilon) \) so that

\[\frac{3}{4 \log 2} \log p + \frac{1}{2} p^{1/2} < \epsilon \frac{p^{1/2} \log p}{4 \log 2}. \]

3. Proof of lemma. Let \(f(x) = (x - c_1) \cdots (x - c_t) \), where the \(c_i \) are \(t \) \((> 1)\) integers which are incongruent modulo an odd prime \(p \). Then the following estimate is a consequence of a deep result of A. Weil (see for example [1], [2]):

\[\left| \sum_{x=0}^{p-1} \left(\frac{f(x)}{p} \right) \right| \leq (t - 1) p^{1/2}. \]

The term corresponding to the product of the 1's in \(S(a_0, \ldots, a_{k-1}) \) is

\[\sum_{x=0}^{p-1} 1 = p - k. \]

A typical term amongst the remaining \(2^k - 1 \) terms is

\[\sum_{x=0}^{p-1} \left(\frac{(x - a_i_1) \cdots (x - a_i_r)}{p} \right) \]

where \(k > r > 1, 0 < i_1 < \cdots < i_r < k - 1 \). By (3.1) this sum is bounded in absolute value by \((r - 1) p^{1/2} + k - r \). We thus have
\[|S(a_0, \ldots, a_{k-1}) - (p - k)| \leq \sum_{r=1}^{k} \left(\frac{(r-1)p^{1/2} + (k-r)}{p} \right) \left(\frac{k}{r} \right) \]
\[= (p^{1/2} - 1) \sum_{r=1}^{k} r \binom{k}{r} - (p^{1/2} - k) \sum_{r=1}^{k} \binom{k}{r} \]
\[= (p^{1/2} - 1)k2^{k-1} - (p^{1/2} - k)(2^k - 1) \]
\[= p^{1/2}\{(k - 2)2^{k-1} + 1\} + \{k2^{k-1} - k\}, \]
so that
\[|S(a_0, \ldots, a_{k-1}) - p| \leq p^{1/2}\{(k - 2)2^{k-1} + 1\} + k2^{k-1}. \]

If \(p > k^2 \) then the right-hand side of the above is
\[\leq p^{1/2}\{(k - 2)2^{k-1} + 1 + 2^{k-1}\} \]
\[\leq p^{1/2}k2^{k-1}. \]

4. **Remarks.** We note that the above arguments can be slightly refined to obtain marginal improvements in the constants appearing in the theorem. However, it appears to be a difficult problem to obtain the true order of magnitude of \(m_p \). We have computed \(N_p(k) \) and \(m_p \) for all primes \(p < 617 \) and observed that for \(p \) in the range \(401 < p < 617 \), \(m_p/\log p \) varies between 1.27 and 1.72. One might expect, therefore, that \(m_p \sim c \log p \) for some constant \(c \) with \(1 < c < 2 \). However, our arguments, unless significantly modified, would not seem to yield a result of the type \(m_p > \log p \).

The residue difference sets modulo \(p \) form a tree with the nodes of the second level corresponding to the elements of \(A_2 \), the nodes of the third level corresponding to the elements of all sets \(A_3 \), etc. The computation of \(N_p(k) \) was done by a depth-first search through this tree on the Xerox Data Systems Sigma 9 computer at Carleton University. As an indication of the number of nodes involved we note that for \(p = 617 \) there were 1,374,659 nodes.

References

Department of Mathematics, Carleton University, Ottawa (K1S 5B6), Ontario, Canada (Current address of K. S. Williams)

Current address (D. A. Buell): Department of Computer Science, Bowling Green State University, Bowling Green, Ohio 43403

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use