AN IDENTITY ON ALGEBRAS OVER A HOPF ALGEBRA

STAVROS PAPASTAVRIDIS

Abstract. Let A be a connected Hopf algebra which has an associative comultiplication $\psi: A \to A \otimes A$. Let $\chi: A \to A$ be the canonical conjugation on A. Let M be a graded algebra over the Hopf algebra A. If $x, y \in M$, $\psi(a) = \Sigma a' \otimes a''$, then we have the identity

$$ax \cdot y = \Sigma (-1)^{\deg x \cdot \deg a''} a''(x \cdot \chi(a'') y).$$

If X is a topological space and $x, y \in H^*(X; \mathbb{Z}_2)$, then we have the identity

$$\text{Sq}^n x \cdot y = \sum_{i=0}^{n} \text{Sq}^i \left(x \cdot \chi(\text{Sq}^{n-i}) y \right)$$

(for the proof see [1]). This formula has been proved useful in quite a few occasions (for example see [1], [2]).

In this note we give a generalization of this formula for algebras over a Hopf algebra.

Let A be a Hopf algebra over a commutative ring with unit. We assume that A is connected and that its comultiplication ψ is associative. Let $\chi: A \to A$ be the canonical conjugation of A. Let M be a graded algebra over the Hopf algebra A. For the terminology and the basic results, we refer to [3].

Under those assumptions, we have

Theorem. Let $x, y \in M$ and $\psi(a) = \Sigma a'_i \otimes a''_i$. Then we have

$$ax \cdot y = \Sigma (-1)^{\deg x \cdot \deg a''_i} a''_i(x \cdot \chi(a''_i) y).$$

Proof. Let

$$\psi(a'_i) = \sum_j b'_{ij} \otimes b''_{ij} \quad \text{and} \quad \psi(a''_i) = \sum_j c'_{ij} \otimes c''_{ij}.$$

Since ψ is associative, we will have

$$\sum_{ij} b'_{ij} \otimes b''_{ij} \otimes a''_i = \sum_{ij} a'_{ij} \otimes c'_{ij} \otimes c''_{ij}.$$

From the basic properties of tensor products and the fact that χ is linear, we get that

$$\sum_{ij} b'_{ij} \otimes b''_{ij} \cdot \chi(a''_i) = \sum_{ij} a'_{ij} \otimes c'_{ij} \cdot \chi(c''_{ij}).$$

Received by the editors June 28, 1977.
AMS (MOS) subject classifications (1970). Primary 57F05.
Key words and phrases. Hopf algebras.

© American Mathematical Society 1978
So we get (see [1, p. 171])

\[
\sum_{i,j} (-1)^{\deg x \cdot \deg b_i^j} b_i^j \cdot x \cdot (-1)^{\deg x \cdot \deg \alpha_i^j} b_i^j \chi(\alpha_i^j)y
\]

\[
= \sum_i (-1)^{\deg x \cdot \deg \alpha_i^j} \alpha_i^j x \cdot \left(\sum_j c_i^j \chi(c_i^j) \right)y.
\]

But \(\sum_j c_i^j \chi(c_i^j) = 0\) unless \(\deg \alpha_i^j = 0\), so the second member of the previous identity is \(ax \cdot y\). Because of the "Cartan" formula (see [3, p. 173]), the first member of the previous identity is equal to the second member of the identity that we want to prove. That ends the proof.

REFERENCES

University of Athens, Mathematical Institute, Solonos 57, Athens 143, Greece

Current address: Department of Mathematics, University of Crete, Iraklion, Greece