$K(\textbf {Z}/2)$ as a Thom spectrum
HTML articles powered by AMS MathViewer
- by Stewart Priddy
- Proc. Amer. Math. Soc. 70 (1978), 207-208
- DOI: https://doi.org/10.1090/S0002-9939-1978-0474271-8
- PDF | Request permission
Abstract:
Dyer-Lashof operations are used to give a simple proof that $K({\mathbf {Z}}/2)$ is a Thom spectrum.References
- Stanley O. Kochman, Homology of the classical groups over the Dyer-Lashof algebra, Trans. Amer. Math. Soc. 185 (1973), 83–136. MR 331386, DOI 10.1090/S0002-9947-1973-0331386-2
- Ib Madsen and R. James Milgram, On spherical fiber bundles and their $\textrm {PL}$ reductions, New developments in topology (Proc. Sympos. Algebraic Topology, Oxford, 1972) London Math. Soc. Lecture Note Ser., No. 11, Cambridge Univ. Press, London, 1974, pp. 43–59. MR 0343286
- Mark Mahowald, A new infinite family in ${}_{2}\pi _{*}{}^s$, Topology 16 (1977), no. 3, 249–256. MR 445498, DOI 10.1016/0040-9383(77)90005-2
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 70 (1978), 207-208
- MSC: Primary 55B20
- DOI: https://doi.org/10.1090/S0002-9939-1978-0474271-8
- MathSciNet review: 0474271