Avoiding self-referential statements
HTML articles powered by AMS MathViewer
- by C. Smoryński
- Proc. Amer. Math. Soc. 70 (1978), 181-184
- DOI: https://doi.org/10.1090/S0002-9939-1978-0476452-6
- PDF | Request permission
Abstract:
Recursion-theoretic proofs of metamathematical results tend to rely on a pair of effectively inseparable r.e. sets and its properties. We establish a special property for a small configuration of such pairs and derive from it some metamathematical results not previously accessible to recursion-theoretic techniques.References
- A. Ehrenfeucht and S. Feferman, Representability of recursively enumerable sets in formal theories, Arch. Math. Logik Grundlag. 5 (1960), 37–41. MR 125791, DOI 10.1007/BF01977641
- Marie Hájková and Petr Hájek, On interpretability in theories containing arithmetic, Fund. Math. 76 (1972), no. 2, 131–137. MR 307897, DOI 10.4064/fm-76-2-131-137
- Robert A. Di Paola, On sets represented by the same formula in distinct consistent axiomatizable Rosser theories, Pacific J. Math. 18 (1966), 455–456. MR 230621, DOI 10.2140/pjm.1966.18.455
- Hilary Putnam and Raymond M. Smullyan, Exact separation of recursively enumerable sets within theories, Proc. Amer. Math. Soc. 11 (1960), 574–577. MR 120150, DOI 10.1090/S0002-9939-1960-0120150-1
- Robert W. Ritchie and Paul R. Young, Strong representability of a partial functions in arithmetic theories. , Information Sci. 1 (1968/1969), 189–204. MR 0258630, DOI 10.1016/0020-0255(69)90016-4
- Hartley Rogers Jr., Theory of recursive functions and effective computability, McGraw-Hill Book Co., New York-Toronto-London, 1967. MR 0224462
- J. C. Shepherdson, Representability of recursively enumerable sets in formal theories, Arch. Math. Logik Grundlag. 5 (1960/61), 119–127. MR 126378, DOI 10.1007/BF01974157 Smoryński A Calculating self-referential statements. II: non-explicit calculations (to appear).
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 70 (1978), 181-184
- MSC: Primary 02F25
- DOI: https://doi.org/10.1090/S0002-9939-1978-0476452-6
- MathSciNet review: 0476452