AVOIDING SELF-REFERENTIAL STATEMENTS

C. SMORYŃSKI

Abstract. Recursion-theoretic proofs of metamathematical results tend to rely on a pair of effectively inseparable r.e. sets and its properties. We establish a special property for a small configuration of such pairs and derive from it some metamathematical results not previously accessible to recursion-theoretic techniques.

0. Introduction. The applications of the dual completeness of a pair of effectively inseparable r.e. sets to metamathematical questions are manifold. Since Shepherdson 1960, however, more powerful results have been obtainable by diagonalization within a given theory. In this note, we prove a generalization of Smullyan's dual completeness result (cf. Rogers 1967, Exercise 11.29) and list some metamathematical corollaries not previously obtainable recursion-theoretically.

We let \([e]\) denote the partial recursive function with index \(e\), and \(W_e\) the r.e. set with index \(e\). \(Texv\) is Kleene's \(T\)-predicate and, for any assertions, \(3vRv\), \(3vSv\), with \(R, S\) recursive, we write
\[3vRv \leq 3vSv: 3v[RV \land \forall v' < v \exists v'],\]
\[3vRv < 3vSv: 3v[RV \land \exists v' < v \exists v'].\]

A disjunction \(3vTv \lor 3vUv\) in one of these contexts is assumed rewritten \(3v(Tv \lor Uv)\). For r.e. sets \(X, Y\), we define
\[X \leq Y: \{x: x \in X \leq x \in Y\}, \quad X < Y: \{x: x \in X < x \in Y\},\]
where \(x \in X, x \in Y\) abbreviate \(3vTexv\) for appropriate \(e\). Note that \(X \leq Y\) and \(Y < X\) are simply the sets obtained by applying the Reduction Theorem to \(X, Y\). (This notation is due to Dave Guaspari.)

1. A double dual completeness theorem. The main result of this note is the following

Theorem. Let \((A, C), (B, D)\) be pairs of effectively inseparable r.e. sets with \(A \subseteq B, C \subseteq D\). There is a recursive function \(f\) such that, for all \(x,\)
\[x \in A \iff fx \in A \iff fx \in B;\]
\[x \in C \iff fx \in C \iff fx \in D.\]

In words, the conclusion of the theorem simply states that the pair \((A, C)\) is uniformly many-one reducible to both pairs \((A, C)\) and \((B, D)\).

Proof. The proof is simple but devious. By Smullyan's dual completeness...
result, there is a recursive function g such that, for all i, j, the function
$[g(i, j)]$ reduces the pair $(W_i \leq W_j, W_j < W_i)$ to (A, C). Apply Smullyan's
Double Recursion Theorem (Rogers 1967, Theorem 11.10) to obtain indices
a, c such that, for $f = [g(a, c)]$ and all x,

\[
\begin{align*}
 x \in W_a &\iff [fx \in D \lor x \in A, \leq \ldots, fx \in B \lor x \in C], \\
 x \in W_c &\iff [fx \in B \lor x \in C, < \ldots, fx \in D \lor x \in A].
\end{align*}
\]

Obviously, W_a and W_c are disjoint.

Claim 1. $W_a = A \leq C = A; W_c = C < A = C$.

To see this, observe

\[
\begin{align*}
 x \in W_a &\Rightarrow x \in W_a - W_c \\
 &\Rightarrow fx \in A \subseteq B \land fx \notin D, \text{ since } A \cap D = \emptyset \\
 &\Rightarrow x \in A, \leq \ldots, fx \in B \lor x \in C, \text{ by definition of } W_a \\
 &\Rightarrow x \in A.
\end{align*}
\]

Similarly, $x \in W_c \Rightarrow x \in C$. But also,

\[
\begin{align*}
 x \in A &\Rightarrow x \in W_a \lor x \in W_c \Rightarrow x \in W_a,
\end{align*}
\]

since $x \in W_c$ yields $x \in C$ which is disjoint from A. Similarly $x \in C \Rightarrow x \in W_c$.

Claim 2. For all x,

\[
\begin{align*}
 x \in A &\iff fx \in A, \quad x \in C \iff fx \in C.
\end{align*}
\]

This is trivial since $f = [g(a, c)]$ and $(A, C) = (W_a, W_c) = (W_a \leq W_c,$

\[W_c < W_a).\]

Claim 3. For all x,

\[
\begin{align*}
 x \in A &\iff fx \in B, \quad x \in C \iff fx \in D.
\end{align*}
\]

The left-to-right implications follow from Claim 2. For the other direction,
assume first that $fx \in B$. A glance at the definition of W_a, W_c reveals that
$x \in W_a$ or $x \in W_c$. The latter yields $fx \in D$, contrary to assumption. Thus
$x \in W_a = A$. Similarly one shows $fx \in D$ implies $x \in C$. Q.E.D.

Obviously we can compose a reduction of (X, Y) to (A, C) with f to obtain
a simultaneous reduction of any pair of disjoint r.e. sets to (A, C) and (B, D).
A second corollary, noticed by J. R. Shoenfield, is this: For A, B, C, D as in
the Theorem, any set X interpolated between A and B, $A \subseteq X \subseteq B$, has
degree at least Θ. [N.B. Without C and D, this need not hold: Creative sets
can have recursive interpolants.]

2. Some metamathematical applications. We give a few corollaries concerning
the metamathematics of r.e. systems of arithmetic (for definiteness: extensions of Robinson's \(\mathbb{Q} \)) that were previously obtainable only via self-
referential formulae (cf. Shepherdson 1960, Smoryński A).

Definitions. A formula $\varphi x_0 \cdots x_{n-1}$ semirepresents a relation $R \subseteq \omega^n$ in a
theory \mathcal{T} iff, for all x_0, \ldots, x_{n-1},

\[
\mathcal{T} \vdash \varphi \bar{x}_0 \cdots \bar{x}_{n-1} \iff Rx_0 \cdots x_{n-1}.
\]
\(\varphi \text{ dually semirepresents} \) a disjoint pair of relations, \(R, S \) iff \(\varphi, \varphi \neg \text{ semirepresents} R, S \), respectively. \(\varphi \text{ represents} R \) iff \(\varphi \text{ dually semirepresents} R \) and its complement. A formula \(\varphi v_0 \cdots v_n \text{ semirepresents (represents)} \) a partial (total) function \(f \) iff (i) \(\varphi \text{ semirepresents (represents)} \) the graph of \(f \), and (ii) \(\varphi \) satisfies a unicity condition, say,

\[
\mathcal{T} \vdash \varphi v_0 \cdots v_{n-1} v \land \varphi v_0 \cdots v_{n-1} v' \rightarrow v = v'.
\]

[This is stronger than necessary for most purposes.]

Corollary 1. Let \(\mathcal{T} \) be a consistent r.e. extension of \(\mathcal{R} \). For any disjoint pair, \(R, S \) of \(n \)-ary r.e. relations, there is a formula \(\varphi v_0 \cdots v_{n-1} \in \Sigma_1 \) which dually semirepresents \(R, S \) in \(\mathcal{T} \); and, moreover, \(\varphi v_0 \cdots v_{n-1} \) defines \(R \) in the set of natural numbers.

Proof. Obviously we can assume the Theorem proven for \(n \)-ary relations. Moreover, by Smullyan's Dual Completeness Theorem, we can assume \(R, S \) to be effectively inseparable. So let \(\psi_0, \psi_1 \) be \(\Sigma_1 \) definitions of \(R, S \) and let \(A = R, C = S, B = \{(x_0, \ldots, x_{n-1}) : \exists (\psi_0), \exists x_0 \cdots \exists x_{n-1}\}, \) and \(D = \{(x_0, \ldots, x_{n-1}) : \exists (\psi_0), \exists x_0 \cdots \exists x_{n-1}\}. \) Now simply define

\[
\exists v_0 \cdots v'_{n-1} [v_0 \cdots v_{n-1} \land (\psi_0 \leq (\psi_1)v_0 \cdots v'_{n-1}],
\]

where \(\chi \in \Sigma_1 \) represents the recursive function \(f \) of the Theorem. Q.E.D.

The correctness of the semirepresentation of \(R \) is the novel feature of this proof. While it comes free with Shepherdson's proof via self-referential formulae, the correctness has either been lacking in recursion-theoretic proofs of Corollary 1 (Ehrenfeucht and Feferman 1960, Putnam and Smullyan 1960), or has resulted in non-\(\Sigma_1 \) semirepresentations (Hájková and Hájek 1972).

Corollary 2. The dual semirepresentation \(\varphi \) for disjoint \(R, S \) can be chosen uniformly in an r.e. sequence, \(\mathcal{T}_0, \mathcal{T}_1, \ldots \), of consistent extensions of \(\mathcal{R} \).

The proof is as before: Let \(B_i, D_i \) be the sets of tuples provably in, respectively out of, \(R \preceq S \) in \(\mathcal{T}_i \); and let \(B = \bigcup_i B_i, D = \bigcup_i D_i \). Now simply define

\[\exists v_0 \cdots v'_{n-1} [v_0 \cdots v_{n-1} \land (\psi_0 \leq (\psi_1)v_0 \cdots v'_{n-1}], \]

where \(\chi \in \Sigma_1 \) represents the recursive function \(f \) of the Theorem. Q.E.D.

Again, this result was originally quite easily proven by means of formal diagonalization.

Corollary 3. Let \(f \) be partial recursive; \(\mathcal{T}_0, \mathcal{T}_1, \ldots \) an r.e. sequence of consistent extensions of \(\mathcal{R} \). There is a formula \(\varphi v_0 \cdots v_n \in \Sigma_1 \) which correctly uniformly semirepresents \(f \) in each \(\mathcal{T}_i \). Moreover, we can assume

\[
\mathcal{T}_i \vdash \neg \varphi \exists x_0 \cdots x_{n-1} \exists y \equiv \exists z \neq y (fx_0 \cdot \cdot \cdot x_{n-1} = z).
\]

Again the result is sharper than the original recursion-theoretic result (Ritchie and Young 1968/1969). We omit the proof.

As a final application we have

Corollary 4. Let \(\mathcal{T}_0 \subset \mathcal{T}_1 \) be consistent r.e. extensions of \(\mathcal{R} \) and let
$R_0 \subseteq R_1$ be n-ary r.e. relations. There is a formula φ such that φ semirepresents R_1 in \mathcal{T}_1.

Proof. We shall cheat slightly. Di Paola 1966 shows that there is a ψ_0 which semirepresents R_0 in \mathcal{T}_0 and ω^n in \mathcal{T}_1. So let ψ_1 uniformly semirepresent R_1 in \mathcal{T}_0, \mathcal{T}_1 and define $\varphi = \psi_0 \land \psi_1$. Q.E.D.

Di Paola’s full result required there to be a recursive interpolant between R_0 and R_1.

References

A. Ehrenfeucht and S. Feferman

M. Hájková and P. Hájek

R. A. di Paola

H. Putnam and R. M. Smullyan

R. W. Ritchie and P. R. Young

H. Rogers, Jr.

J. C. Shepherdson

C. Smoryński

429 SOUTH WARWICK, WESTMONT, ILLINOIS 60559