MULTIPLIERS ON COMPACT GROUPS

IAN INGLIS

Abstract. We give some sufficient conditions for a function on a compact totally disconnected abelian group to be an L^p Fourier multiplier.

1. Introduction. Let X denote a compact abelian group with a strictly decreasing sequence of open compact subgroups $\{X_n\}_{n=0}^\infty$ such that $\bigcup X_n = X$ and $2 < |X_n| - |X_{n+1}| < b$, where $|S|$ denotes the Haar measure of a set S. Let G denote the dual of X and G_n the annihilator of X_n in G; thus $\{G_n\}$ is an increasing sequence of open compact subgroups of G, $\bigcup G_n = G$, $\bigcap G_n = \{0\}$ and $2 < |G_{n+1}| - |G_n| < b$. We denote by dx and dg the Haar measures on X and G respectively, and assume that these are adjusted so that the inversion theorem holds.

If $\phi \in L^\infty(X)$ then ϕ defines a bounded linear operator T_ϕ on $L^2(G)$ via the formula

$$T_\phi f \star = \hat{\phi} \hat{f}.$$

We say that ϕ is an L^2 Fourier multiplier. Similarly for $1 < p < \infty$, we say that ϕ is an L^p Fourier multiplier, (and write $\phi \in M_p(X)$), if there exists a number B such that

$$\|T_\phi f\|_p \leq B\|f\|_p \quad (1)$$

for all f in $L^p \cap L^2(G)$; we write $\|\phi\|_{M_p}$ for the smallest value of B for which (1) holds. It is well known that $M_p = M_\frac{1}{p}$ (where, as always $(1/p) + (1/p^*) = 1$) and

$$A(X) = M_1(X) \subseteq M_p(X) \subseteq M_q(X) \subseteq M_2(X) = L^\infty(X)$$

when $1 < p < q < 2$ and where $A(X)$ is the space of Fourier transforms of integrable functions with the inherited norm. A wealth of information about multipliers is contained in the book [1] of Edwards and Gaudry.

2. Suppose $1 < \theta < \infty$; for $n > 0$ we define the subgroup X_n^θ of X by the formula

$$X_n^\theta = X_j \quad \text{where} \quad |X_j| > |X_n^\theta| > |X_{n+1}|.$$

Our main result is the following:
Theorem. Suppose \(\phi \) is a function on \(X \) constant on cosets of \(X_n^\theta \) outside \(X_n \). If

\[
|\phi(\chi)| \leq B|X_n|^{{(\theta - 1)/2}} \quad \text{when} \quad \chi \in X_{n-1} \setminus X_n
\]

for some constant \(B \) independent of \(n \), then \(\phi \in M_p(X) \) for \(1 < p < \infty \).

The proof employed is singular-integral in spirit, although no use is made of Calderón-Zygmund type covering lemmas. We need the following:

Lemma. For \(1 < \theta < \infty \) we define the subgroup \(G_n^\theta \) of \(G \) by the formula

\[
G_n^\theta = G_j \quad \text{where} \quad |G_j| < |G_n^\theta| < |G_j + 1|.
\]

In other words, \(G_n^\theta \) is the annihilator of \(X_n^\theta \). Suppose \(k \) is an integrable function on \(G \), constant on cosets of \(G_n^\theta \) outside \(G_n^\theta \). If

\[
|k(\chi)| \leq B|X_n|^{{(\theta - 1)/2 + \beta}} \quad \text{when} \quad \chi \in X_{n-1} \setminus X_n
\]

for some \(\beta > 0 \), then

\[
\|k * f\|_\infty \leq B \cdot C \cdot \|f\|_\infty
\]

where \(C \) is a constant independent of \(\|k\|_1 \).

Proof. Fix \(f \) in \(L^\infty \). By translation invariance it suffices to show that, for every \(N > 0 \),

\[
|G_N|^{-1} \int_{G_N} k * f \, d\chi \leq B \cdot C \|f\|_\infty.
\]

Fix \(N \) and write \(f = f_1 + f_2 \) where \(f_1 = f \cdot \xi_{G_n^\theta + 1} \) (\(\xi_S \) denotes the indicator function of the set \(S \)). Then

\[
|G_N|^{-1} \int_{G_N} k * f_1 \, d\chi = |D_N * k * f_1(0)| \quad \text{where} \quad D_n = \xi_{G_n} \cdot |G_n|^{-1}
\]

\[
= \left| \int_{X_n} \hat{k} \hat{f}_1 \, d\chi \right|
\]

\[
\leq B|X_n|^{-1/2 + \beta} \int_{X_n} |\hat{f}_1| \, d\chi \quad \text{by (5)}
\]

\[
\leq B|X_n|^{-1/2 + \beta + 1/2} \left(\int_{X_n} |\hat{f}_1|^2 \, d\chi \right)^{1/2}
\]

by Hölder’s inequality,

\[
\leq B|X_n|^{-1/2 + \beta} \|f_1\|_2
\]

\[
\leq B|X_n|^{-1/2 + \beta} |G_n + 1|^{-1/2} \|f\|_\infty
\]

by the definition of \(f_1 \),

\[
\leq B \cdot b^{\theta/2} |X_n| \|f\|_\infty.
\]

Now clearly,
\[|G_N|^{-1} \int_{G_N} k \ast f_2 \, dx \]

\[\leq |G_N|^{-1} \int_{G_N} |k \ast f_2 - |G_{N+1}|^{-1} \int_{G_{N+1}} k \ast f_2| \, dx \]

\[+ |G_{N+1}|^{-1} \int_{G_{N+1}} k \ast f_2 \]

But

\[|G_N|^{-1} \int_{G_N} k \ast f_2 - |G_{N+1}|^{-1} \int_{G_{N+1}} k \ast f_2 \, dx \]

\[\leq |G_N|^{-1} \int_{G_N} |k \ast f_2 - |G_{N+1}|^{-1} \int_{G_{N+1}} |k \ast f_2 - \sigma| \, dx \]

\[\text{where } \sigma = \int_G k(-y) f_2(y) \, dy. \quad (7) \]

The second term on the right of (7) is equal to

\[|G_{N+1}|^{-1} \int_{G_{N+1}} dx \left(\left| \int_{G \setminus G_{N+1}} (k(x-y) - k(-y)) f_2(y) \, dy \right| \right) = 0 \]

since \(x \in G_{N+1} \) and \(k \) is constant on the cosets of \(G_{N+1} \) outside \(G_{N+1}^\theta \). The same argument shows that the first term on the right of (7) is also zero, so

\[|G_N|^{-1} \int_{G_N} k \ast f_1 \, dx \]

Now write \(f_2 = f_3 + f_4 \) where \(f_3 = f_2 \cdot \xi_{G_{N+1}} \). The argument used to estimate \(|G_N|^{-1} \int_{G_N} k \ast f_1 \, dx \) shows that

\[|G_{N+1}|^{-1} \int_{G_{N+1}} k \ast f_3 \, dx \leq B \cdot b^{\theta/2} |X_{N+1}|^\beta \| f \|_\infty, \]

and the argument used to estimate \(|G_N|^{-1} \int_{G_N} k \ast f_2 \, dx \) shows that

\[|G_{N+1}|^{-1} \int_{G_{N+1}} k \ast f_4 \, dx \leq |G_{N+2}|^{-1} \int_{G_{N+2}} k \ast f_4 \, dx \]

We may suppose without loss of generality that \(\hat{k} = 0 \) on \(X_M \) for some large \(M \); thus a continuation of the above argument leads to the estimate

\[|G_N|^{-1} \int_{G_N} k \ast f \, dx \leq b^{\theta/2} \cdot B \cdot \| f \|_\infty \left(\sum_{n=0}^{\infty} |X_n|^\beta \right) \]

\[\leq b^{\theta/2} \cdot B \cdot \| f \|_\infty \sum_{n=0}^{\infty} 2^{-n\beta} \]

\[\leq b^{\theta/2} \cdot B \cdot (1 - 2^{-\beta})^{-1} \| f \|_\infty, \]

which proves the lemma.
Proof of Theorem. Set $\Theta(x) = |X_n^{(\theta - 1)/2}$ when $x \in X_{n-1} \setminus X_n$, and consider the family of operators U_z on $L^2(G)$ defined by

$$(U_z f) = \hat{f} \cdot \Theta^{-z + \beta}$$

where $0 < \text{Re} z < 1$ and $\beta > 0$. It is easy to check that, by virtue of (3), the mapping $z \to U_z$ is uniformly bounded and strongly continuous in the strip $0 < \text{Re} z < 1$ and analytic in $0 < \text{Re} z < 1$, to the space of bounded linear operators on $L^2(G)$.

It follows immediately from (3) that

$$\|U_{1+\beta}f\|_2 \leq B \cdot \|f\|_2.$$ \hspace{1cm} (8)

Furthermore it follows from the above lemma that

$$\|U_{\Theta}f\|_\infty \leq B \cdot C \cdot \|f\|_\infty.$$ \hspace{1cm} (9)

(This amounts essentially to the observation that a function constant on cosets of X_n^θ outside X_n has Fourier transform constant on cosets of G_n outside G_n^θ.) An application of Stein's interpolation theorem, [6, p. 205], shows that

$$\phi \cdot \Theta^{-i + \beta} \in M_{2/t}(X)$$

where $0 < t < 1$, and $\beta > 0$. To see that $\phi \in M_p$ for all p in $(1, \infty)$ fix p in $(2, \infty)$ and set $t = 2/p$. Then

$$\phi \Theta^{-2/p + \beta} \in M_p(X),$$

in particular when $\beta = 2/p$. The proof is complete.

Virtually the same proof yields:

Corollary. Under the same conditions as stated in the theorem

$$\phi \cdot \Theta^{-t} \in M_p(X) \quad \text{when} \quad 2/(2 - t) < p < 2/t.$$ \hspace{1cm} (10)

It is not difficult, using the ideas in [2], to construct examples of functions ϕ such that $\phi \cdot \Theta^{-t} \in M_p$ when $p > 2/t$. The interesting case is, of course, when $p = 2/t$—see remark (b) below.

3. Remarks. (a) The condition that $|X_n| \cdot |X_{n+1}|^{-1} < b$ is not really necessary. If $b_n = |X_n| \cdot |X_{n+1}|^{-1}$ is such that $b_n \uparrow \infty$ and $\Sigma b_n^2 < \infty$, then the above proof is easily adapted to show that:

If ϕ is a function constant on cosets of X_n outside X_n then $|\phi(x)| \leq B \cdot b_n^{-(1/2 + \beta)}$ when $x \in X_n \setminus X_{n+1}$ for some $\beta > 0$ implies that $\phi \in A(X)$, and $|\phi(x)| \leq B \cdot b_n^{-1/2}$ when $x \in X_n \setminus X_{n+1}$ implies that $\phi \in M_p(X)$ for $1 < p < \infty$.

This complements some results of Spector [5]. Further results may be obtained by considering subsequences $\{X_{n_k}\}$ of $\{X_n\}$.

(b) There is a natural definition of $\text{BMO}(G)$, the space of functions of bounded mean oscillation on G, see [2]. It would be interesting to know if the functions ϕ satisfying the hypotheses of the theorem are $L^\infty \to \text{BMO}$ "multipliers". A positive answer would imply that $\phi \cdot \Theta^{-t} \in M_{2/t}$ when $0 < t < 1$.

MULTIPLIERS ON COMPACT GROUPS

(c) Let Z denote the group of integers, and Z_n the subgroup $2^n \cdot 2^{n-1} \cdot \ldots \cdot 2^1 Z$, where $n \geq 0$. Suppose ϕ is a function constant on cosets of Z_{n+1} in $Z_n \setminus Z_{n+1}$. If $|\phi(m)| < B \cdot 2^{-(n+1)(\beta + 1/2)}$ when $m \in Z_n \setminus Z_{n+1}$ for some $\beta > 0$ then ϕ is a Fourier-Stieltjes transform, and if $|\phi(m)| < B \cdot 2^{-(n+1)/2}$ when $m \in Z_n \setminus Z_{n+1}$ then $\phi \in M_p(Z)$ for $1 < p < \infty$. To see this argue as follows: Let $X = A_\alpha$, the α-adic integers, where $\alpha = (2, 4, 8, 16, \ldots)$ (see [3, §10]), and let $X_n = \{x = (x_j)_{j=0}^{\infty} \in X : x_j = 0$ when $0 < j < n - 1\}$. It is easily seen that $|X_n| = (2^n \cdot 2^{n-1} \cdot \ldots \cdot 2^1)^{-1}$. X has an (algebraic!) subgroup isomorphic to Z, namely the group generated by the element $(1, 0, 0, 0, \ldots)$, which we also denote by Z. Some rather tedious calculations show that the cosets of Z_{n+1} in $Z_n \setminus Z_{n+1}$ sit inside the cosets of X_n in $X_n \setminus X_{n+1}$; hence ϕ is the restriction of a function Φ on X, satisfying the hypotheses in (a) above. The result now follows immediately from well-known results about restrictions of Fourier multipliers to subgroups, see for example Saeki [4, Corollary 4.6].

REFERENCES

ISTITUTO MATEMATICO, UNIVERSITÀ DI MILANO, 20133 MILANO, ITALY