Note on Brewer’s character sum
HTML articles powered by AMS MathViewer
- by Kenneth S. Williams PDF
- Proc. Amer. Math. Soc. 71 (1978), 153-154 Request permission
Abstract:
A very short proof is given of the result \[ \sum \limits _{x = 0}^{p - 1} {\left ( {\frac {{(x + 2)({x^2} - 2)}}{p}} \right )} = 0,\] if $p \equiv 5$ or $7 \pmod 8$.References
- B. W. Brewer, On certain character sums, Trans. Amer. Math. Soc. 99 (1961), 241–245. MR 120202, DOI 10.1090/S0002-9947-1961-0120202-1
- Philip A. Leonard and Kenneth S. Williams, Jacobi sums and a theorem of Brewer, Rocky Mountain J. Math. 5 (1975), 301–308. MR 366831, DOI 10.1216/RMJ-1975-5-2-301
- A. R. Rajwade, Certain classical congruences via elliptic curves, J. London Math. Soc. (2) 8 (1974), 60–62. MR 338001, DOI 10.1112/jlms/s2-8.1.60
- Albert Leon Whiteman, A theorem of Brewer on character sums, Duke Math. J. 30 (1963), 545–552. MR 154857
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 153-154
- MSC: Primary 10G05
- DOI: https://doi.org/10.1090/S0002-9939-1978-0472725-1
- MathSciNet review: 0472725