Markov partitions are not smooth
HTML articles powered by AMS MathViewer
- by Rufus Bowen PDF
- Proc. Amer. Math. Soc. 71 (1978), 130-132 Request permission
Abstract:
The boundaries of the sets in a Markov partition for linear Anosov diffeomorphisms of ${T^3}$ cannot be smooth.References
- Rufus Bowen, Markov partitions and minimal sets for Axiom $\textrm {A}$ diffeomorphisms, Amer. J. Math. 92 (1970), 907–918. MR 277002, DOI 10.2307/2373402
- John M. Franks, Invariant sets of hyperbolic toral automorphisms, Amer. J. Math. 99 (1977), no. 5, 1089–1095. MR 482846, DOI 10.2307/2374001
- Morris W. Hirsch, On invariant subsets of hyperbolic sets, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, New York, 1970, pp. 126–135. MR 0264684
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493
- Anthony Manning, Axiom $\textrm {A}$ diffeomorphisms have rational zeta functions, Bull. London Math. Soc. 3 (1971), 215–220. MR 288786, DOI 10.1112/blms/3.2.215
- Ja. G. Sinaĭ, Construction of Markov partitionings, Funkcional. Anal. i Priložen. 2 (1968), no. 3, 70–80 (Loose errata) (Russian). MR 0250352
- S. G. Hancock, Orbits of paths under hyperbolic toral automorphisms, Dynamical systems, Vol. I—Warsaw, Astérisque, No. 49, Soc. Math. France, Paris, 1977, pp. 93–96. MR 0488166
- Rufus Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401–414. MR 274707, DOI 10.1090/S0002-9947-1971-0274707-X
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 130-132
- MSC: Primary 58F15
- DOI: https://doi.org/10.1090/S0002-9939-1978-0474415-8
- MathSciNet review: 0474415