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MARKOV PARTITIONS ARE NOT SMOOTH1

RUFUS BOWEN

Abstract. The boundaries of the sets in a Markov partition for linear

Anosov diffeomorphisms of T3 cannot be smooth.

It will be shown that the boundaries of the rectangles in a Markov partition

for an Anosov automorphism of the 3-torus are never smooth. The proof

constructs a certain one-dimensional invariant set and then appeals to the

result of Franks [2] that such a set cannot contain a smooth arc. The existence

of such an invariant set was asked by Smale (see Hirsch [3]); S. G. Hancock

has also constructed such a set [7].

Let A be a 3 x 3 integral matrix with eigenvalues XX,X2, X3 such that

det A = XXX2X3 = ± 1 and each |X,| ¥= 1.

For definiteness we suppose |A,| < 1, |X2|, |A3| > 1. Let Vs be the line in R3

spanned by the eigenvector for X, and V the invariant plane corresponding

to X2 and X3; so R3 = Vs © V. A compact set of the form R = A © B is

called a rectangle provided R = int R. One writes dsR = A © dB and 3 "R

= dA © B. A rectangle in F3 is the projection of a rectangle in R3 of small

diameter.

The matrix A induces a diffeomorphism/ on Ts = R3/Z3 by f(x + Z3)

— Ax + Z3. A Markov partition for/is a family Q = {/?„..., Rm) of small

connected rectangles in T3 covering T3 and satisfying

(i)int(R¡ n Rj) = 0 for i ^ j;
(ii)f(dse) Edse where d'ß = UT-i9^
(iii)/-1(9ue) Edu6 where duG = UT-io"^-

The conditions |\| ^ 1 means that/is an Anosov diffeomorphism and hence

has Markov partitions (Sinai [6]).

Proposition. X = n'k=ofk(dsG-) is a compact one-dimensional invariant

set for f.

Proof. That f(X) = X follows from (ii) above. Because X EdsG is

nowhere dense in F3, dim X < 2 and then dim X < 1 by a result of Hirsch

and Williams [3].

Next one finds a periodic point p Eds&. This is accomplished by counting

the number Nn(f) of fixed points off in two different ways. For convenience
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assume Xx, X2, X3 are all positive. From algebraic topology

Nn(f) = |det(7 - A")\ - | - Àf - X"2 - X3" + (XXX2)"+ (XXX3)"+ (X2X3)"\.

On the other hand one estimates N„(f) using symbolic dynamics (Manning

[5] has an exact count). There is a subshift of finite type a: 2B -» 2B and an

at most c-to-1 (c < oo) surjection [1] it: 2b —> F3 so that ir ° o = f ° <n. The

map tr is 1-1 over points x E F3 \ V kezfk(àsQ U 3"6). It follows that

!#„(/) - NH(o\ZB)\ < c- card{x E3*e u3uß:/nx = x).

The local unstable manifold W" (x) is defined by

Weu(x) = x+ [v E V": \\v\\ < e).

Because s = 1 and Rk is connected, each

d"Rk = (We"(xUk) n 7?,) u (Wc"(xik) n 7?,)

for certain xhk, x2k E Rk. The Markov condition f~x(d"Q) c3"C implies

that/-1 maps each of the sets {W(xjk, Rk))jk into another one, by a

contraction. It follows that/-1 (and hence/) has only finitely many periodic

points in 3"ß.

We shall prove that 3*6 contains infinitely many periodic points. Other-

wise  \N„(fi) - N„(o\2B)\ is bounded. Now

Nn(o\ZB) = Tr(B") = ti? + --- +iir"

where jh,, ..., /l, are the eigenvalues of B. Since \XX\, \XXX2\ = |X3|_I and

|a,X3| = \X2\~X are all less than 1, one would have (recall X2X3 > 0 for

convenience) that

C„ - /l? +  • • •  + ft." + A2" + X3" - (A2A3)"

is bounded. Now the entropy of/equals

h(f) = log(A2A3)   (see [8]);

also h(f) = h(o\2B) = log ft where /x is the largest positive eigenvalue of B,

say fi = nr. Then X2X3 = /tr and so

c„ = /!,"+• • •   +/V-,+A2" + A3".

The function

00    c z" i

?(Z) = CXP „?,   ~n~ = (1-X2z)(l-X3z)(l-Mlz)---(1-/V_1z)

is analytic on |z| < 1 (c„ bounded) but has a pole at z = a2_i, a contradiction.

Now letp E 3J6 with/'jD = p. In [1] certain finite strings of integers Js(x)*

and Ju(x)* were given which described the position of x relative to 6 and its

boundaries. These strings of integers are constant over the minimal set {p,

f(p), . .. ,f"~x(p)) [1, p. 916]. From this it follows that (see [1, pp. 910-912])
there are neighborhoods Uk oîfkp so that

v E Weu(fp)ndse n Uk^f-\y E3JC.

Since /"1H/e"(/^)c W?(fk~xp), it follows that there is a neighborhood
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U c U0 of p so that f-y E W?if~p) n 3J6 n U_¡ for every i > 0 when

y E We"ip) ndse n CA Hence W?<j>) nd'G n U E D^o/'^'C) = *•
Now W"ip) n 1/ contains a small 2-disk D about p in ^"(p). The sets

D n Rk ik = I, . . . , m) generate a partition of D into closed sets with dense

interior intersecting only in their boundaries and whose boundaries lie in

dsG n W?ip). There are at least two sets sincep £3*6; thus 3*6 n W?ip)

has dimension 1 since it separates open sets in R2 [4, p. 46]. Hence dim X =

1.   D

Theorem. G is not a smooth partition.

Proof. Smoothness here means that the boundaries of the Rk's are piece-

wise smooth submanifolds (with corners). If 6 were smooth, then 3*6 n

W"ip) in the above proof would piecewise be a smooth 1-manifold. But a

theorem of Franks [2] says that a one-dimensional invariant subset for /

cannot contain a C ' arc.   □
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